The 7-hydroxylation of dehydroepiandrosterone in rat brain. 2010

Aiqun Li, and James C Bigelow
Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209-8334, USA.

Dehydroepiandrosterone (DHEA) is an important neurosteroid with multiple functions in the central nervous system including neuroprotection. How DHEA exerts its neuroprotection function has not been fully elucidated. One possible mechanism is via its active metabolites, 7alpha-OH DHEA and 7beta-OH DHEA. The purpose of this research is to understand how DHEA is metabolized to 7alpha-OH DHEA and 7beta-OH DHEA by brain tissue. DHEA was incubated with rat brain microsomes and mitochondria and the 7alpha-OH DHEA and 7beta-OH DHEA formed by these fractions were analyzed by LC/MS. For the first time, we observed that DHEA could be metabolized to 7alpha-OH DHEA and 7beta-OH DHEA in mitochondria but the formation of 7alpha-OH DHEA and 7beta-OH DHEA demonstrated different enzymatic kinetic properties. Adding NADPH, an essential cofactor, to mitochondria incubation mixtures increased only the formation of 7alpha-OH DHEA, but not that of 7beta-OH DHEA. Addition of estradiol to the incubation mixtures inhibited only the formation of 7alpha-OH DHEA, but not that of 7beta-OH DHEA. Western blot analysis showed that both microsomes and mitochondria contained cytochrome P450 7B. We also found that 7alpha-OH DHEA could be converted to 7beta-OH DHEA by rat brain homogenates. Our data suggest that 7alpha-OH DHEA and 7beta-OH DHEA are formed by different enzymes and that 7beta-OH DHEA can be formed from both DHEA and 7alpha-OH DHEA, although the overall level of 7beta-OH DHEA was very low.

UI MeSH Term Description Entries
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D003687 Dehydroepiandrosterone A major C19 steroid produced by the ADRENAL CORTEX. It is also produced in small quantities in the TESTIS and the OVARY. Dehydroepiandrosterone (DHEA) can be converted to TESTOSTERONE; ANDROSTENEDIONE; ESTRADIOL; and ESTRONE. Most of DHEA is sulfated (DEHYDROEPIANDROSTERONE SULFATE) before secretion. Dehydroisoandrosterone,Prasterone,5-Androsten-3-beta-hydroxy-17-one,5-Androsten-3-ol-17-one,Androstenolone,DHEA,Prasterone, 3 alpha-Isomer,5 Androsten 3 beta hydroxy 17 one,5 Androsten 3 ol 17 one,Prasterone, 3 alpha Isomer
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005260 Female Females
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D000072474 Cytochrome P450 Family 7 A cytochrome P450 enzyme family whose members function as steroid 7-alpha hydroxylases. CYP7 Enzymes,CYP7 Family

Related Publications

Aiqun Li, and James C Bigelow
January 1962, Biochimica et biophysica acta,
Aiqun Li, and James C Bigelow
December 1963, Experientia,
Aiqun Li, and James C Bigelow
February 1976, Journal of steroid biochemistry,
Aiqun Li, and James C Bigelow
January 2005, The Journal of steroid biochemistry and molecular biology,
Aiqun Li, and James C Bigelow
March 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie,
Aiqun Li, and James C Bigelow
November 1972, Experientia,
Aiqun Li, and James C Bigelow
September 1965, Die Naturwissenschaften,
Aiqun Li, and James C Bigelow
December 1978, Journal of steroid biochemistry,
Copied contents to your clipboard!