Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli. 2010

Mohit Kumar, and Mario S Mommer, and Victor Sourjik
Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.

Protein mobility affects most cellular processes, such as the rates of enzymatic reactions, signal transduction, and assembly of macromolecular complexes. Despite such importance, little systematic information is available about protein diffusion inside bacterial cells. Here we combined fluorescence recovery after photobleaching with numerical modeling to analyze mobility of a set of fluorescent protein fusions in the bacterial cytoplasm, the plasma membrane, and in the nucleoid. Estimated diffusion coefficients of cytoplasmic and membrane proteins show steep dependence on the size and on the number of transmembrane helices, respectively. Protein diffusion in both compartments is thus apparently obstructed by a network of obstacles, creating the so-called molecular sieving effect. These obstructing networks themselves, however, appear to be dynamic and allow a slow and nearly size-independent movement of large proteins and complexes. The obtained dependencies of protein mobility on the molecular mass and the number of transmembrane helices can be used as a reference to predict diffusion rates of proteins in Escherichia coli. Mobility of DNA-binding proteins apparently mainly depends on their binding specificity, with FRAP recovery kinetics being slower for the highly specific TetR repressor than for the relatively nonspecific H-NS regulator.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004058 Diffusion The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT. Diffusions
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D017433 Protein Structure, Secondary The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to ALPHA-HELICES; BETA-STRANDS (which align to form BETA-SHEETS), or other types of coils. This is the first folding level of protein conformation. Secondary Protein Structure,Protein Structures, Secondary,Secondary Protein Structures,Structure, Secondary Protein,Structures, Secondary Protein

Related Publications

Mohit Kumar, and Mario S Mommer, and Victor Sourjik
December 1982, Biochemical Society transactions,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
October 2009, Journal of biochemistry,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
January 1980, Annals of the New York Academy of Sciences,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
January 2009, Journal of bacteriology,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
June 2014, Molecular microbiology,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
August 1973, Experimental cell research,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
December 1969, Archives of biochemistry and biophysics,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
February 1987, Biochimica et biophysica acta,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
April 1982, Journal of bacteriology,
Mohit Kumar, and Mario S Mommer, and Victor Sourjik
May 1958, The Journal of biophysical and biochemical cytology,
Copied contents to your clipboard!