Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. 1991

W M Fritschy, and G H Wolters, and R van Schilfgaarde
Department of Surgery, University of Groningen, Netherlands.

We investigated the effect of alginate-polylysine-alginate microencapsulation on glucose-induced insulin secretion by rat islets. Applying the encapsulation method originally described by Lim, we found severely reduced in vitro insulin release (expressed as picomoles of insulin.10 islets-1.45 min-1 when incubated in 16.5 mM glucose), because the insulin release with encapsulated islets was 1.42 +/- 0.49 compared to 13.58 +/- 0.80 with free control islets. This could not be explained by inadequate permeability of the capsule, because insulin release was also severely reduced (2.12 +/- 0.61) when islets were subjected to the procedure but without the membrane-forming polylysine step. Therefore, islets were tested after having been subjected separately to each of the steps of the procedure. Insulin release was not affected by either alginate or CaCl2 but was severely reduced after prolonged suspension in saline or treatment with citrate. When saline and citrate were replaced by Ca2(+)-free Krebs-Ringer bicarbonate buffer (KRBB) and 1 mM EGTA, respectively, insulin release improved significantly both with complete and with incomplete (no polylysine step) encapsulation. This outcome was verified in a set of experiments run in parallel with islets derived from the same isolation procedure. Insulin release was 1.20 +/- 0.23 from islets encapsulated with the method of Lim and 10.73 +/- 1.04 from free control islets. With the modified procedure, insulin release was 9.17 +/- 0.52 vs. 9.61 +/- 1.27 for complete versus incomplete encapsulation, respectively. We conclude that Ca2(+)-free KRBB instead of saline and EGTA instead of citrate should be used to obtain an adequate insulin response from encapsulated islets and that the capsule membrane as such has no influence on glucose and insulin diffusion.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D011107 Polylysine A peptide which is a homopolymer of lysine. Epsilon-Polylysine,Poly-(Alpha-L-Lysine),Epsilon Polylysine
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000464 Alginates Salts and esters of ALGINIC ACID that are used as HYDROGELS; DENTAL IMPRESSION MATERIALS, and as absorbent materials for surgical dressings (BANDAGES, HYDROCOLLOID). They are also used to manufacture MICROSPHERES and NANOPARTICLES for DIAGNOSTIC REAGENT KITS and DRUG DELIVERY SYSTEMS. Alginate,Alginic Acid, Barium Salt,Alginic Acid, Calcium Salt,Alginic Acid, Copper Salt,Alginic Acid, Potassium Salt,Alginic Acid, Sodium Salt,Alloid G,Barium Alginate,Calcium Alginate,Calginat,Copper Alginate,Kalrostat,Kalrostat 2,Kaltostat,Potassium Alginate,Sodium Alginate,Sodium Calcium Alginate,Vocoloid,Xantalgin,poly(Mannuronic Acid), Sodium Salt,Alginate, Barium,Alginate, Calcium,Alginate, Copper,Alginate, Potassium,Alginate, Sodium,Alginate, Sodium Calcium,Calcium Alginate, Sodium
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001672 Biocompatible Materials Synthetic or natural materials, other than DRUGS, that are used to replace or repair any body TISSUES or bodily function. Biomaterials,Bioartificial Materials,Hemocompatible Materials,Bioartificial Material,Biocompatible Material,Biomaterial,Hemocompatible Material,Material, Bioartificial,Material, Biocompatible,Material, Hemocompatible

Related Publications

W M Fritschy, and G H Wolters, and R van Schilfgaarde
June 1993, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
October 1975, Diabetologia,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
August 1980, Diabetologia,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
May 2006, Life sciences,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
June 1987, Zhong xi yi jie he za zhi = Chinese journal of modern developments in traditional medicine,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
January 1992, Diabete & metabolisme,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
August 2010, Angiology,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
July 2003, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
March 1990, Arzneimittel-Forschung,
W M Fritschy, and G H Wolters, and R van Schilfgaarde
August 1979, Diabetologia,
Copied contents to your clipboard!