Ethanol reduces GABAA alpha1 subunit receptor surface expression by a protein kinase Cgamma-dependent mechanism in cultured cerebral cortical neurons. 2010

Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.

Prolonged ethanol exposure causes central nervous system hyperexcitability that involves a loss of GABAergic inhibition. We previously demonstrated that long-term ethanol exposure enhances the internalization of synaptic GABA(A) receptors composed of alpha1beta2/3gamma2 subunits. However, the mechanisms of ethanol-mediated internalization are unknown. This study explored the effect of ethanol on surface expression of GABA(A) alpha1 subunit-containing receptors in cultured cerebral cortical neurons and the role of protein kinase C (PKC) beta, gamma, and epsilon isoforms in their trafficking. Cultured neurons were prepared from rat pups on postnatal day 1 and maintained for 18 days. Cells were exposed to ethanol, and surface receptors were isolated by biotinylation and P2 fractionation, whereas functional analysis was conducted by whole-cell patch-clamp recording of GABA- and zolpidem-evoked responses. Ethanol exposure for 4 h decreased biotinylated surface expression of GABA(A) receptor alpha1 subunits and reduced zolpidem (100 nM) enhancement of GABA-evoked currents. The PKC activator phorbol-12,13-dibutyrate mimicked the effect of ethanol, and the selective PKC inhibitor calphostin C prevented ethanol-induced internalization of these receptors. Ethanol exposure for 4 h also increased the colocalization and coimmunoprecipitation of PKCgamma with alpha1 subunits, whereas PKCbeta/alpha1 association and PKCepsilon/alpha1 colocalization were not altered by ethanol exposure. Selective PKCgamma inhibition by transfection of selective PKCgamma small interfering RNAs blocked ethanol-induced internalization of GABA(A) receptor alpha1 subunits, whereas PKCbeta inhibition using pseudo-PKCbeta had no effect. These findings suggest that ethanol exposure selectively alters PKCgamma translocation to GABA(A) receptors and PKCgamma regulates GABA(A) alpha1 receptor trafficking after ethanol exposure.

UI MeSH Term Description Entries
D008578 Meninges The three membranes that cover the BRAIN and the SPINAL CORD. They are the dura mater, the arachnoid, and the pia mater.
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000077334 Zolpidem An imidazopyridine derivative and short-acting GABA-A receptor agonist that is used for the treatment of INSOMNIA. Imidazo(1,2-a)pyridine-3-acetamide, N,N,6-trimethyl-2-(4-methylphenyl)-,Ambien,Amsic,Bikalm,Dalparan,N,N,6-Trimethyl-2-(4-methylphenyl)imidazo(1,2a)pyridine-3-acetamide hemitartrate,SL 80.0750,SL-800750-23-N,Stilnoct,Stilnox,Zodormdura,Zoldem,Zolirin,Zolpi-Lich,Zolpidem 1A Pharma,Zolpidem AbZ,Zolpidem Hemitartrate,Zolpidem Tartrate,Zolpimist,Zolpinox,SL 800750 23 N,Zolpi Lich
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
May 2013, The Journal of pharmacology and experimental therapeutics,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
January 2016, The Journal of pharmacology and experimental therapeutics,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
August 1998, British journal of pharmacology,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
October 1998, The Journal of biological chemistry,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
December 2000, The Journal of biological chemistry,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
October 1992, Brain research. Molecular brain research,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
July 2007, Molecular pharmacology,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
November 1991, Brain research,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
January 1994, Alcohol and alcoholism (Oxford, Oxfordshire). Supplement,
Sandeep Kumar, and Asha Suryanarayanan, and Kevin N Boyd, and Chris E Comerford, and Marvin A Lai, and Qinglu Ren, and A Leslie Morrow
May 2006, Brain research,
Copied contents to your clipboard!