Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. 2010

Linan Chen, and John M Lopes
Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.

The basic helix-loop-helix (bHLH) proteins comprise a eukaryotic transcription factor family involved in multiple biological processes. They have the ability to form multiple dimer combinations and most of them also bind a 6 bp site (E-box) with limited specificity. These properties make them ideal for combinatorial regulation of gene expression. The Saccharomyces cerevisiae CIT2 gene, which encodes citrate synthase, was previously known to be induced by the bHLH proteins Rtg1p and Rtg3p in response to mitochondrial damage. Rtg1p-Rtg3p dimers bind two R-boxes (modified E-boxes) in the CIT2 promoter. The current study tested the ability of all nine S. cerevisiae bHLH proteins to regulate the CIT2 gene. The results showed that expression of CIT2-lacZ reporter was induced in a rho(0) strain by the presence of inositol via the Ino2p and Ino4p bHLH proteins, which are known regulators of phospholipid synthesis. Promoter mutations revealed that inositol induction required a distal E-box in the CIT2 promoter. Interestingly, deleting the INO2, INO4 genes or the cognate E-box revealed phosphate induction of CIT2 expression. This layer of expression required the two R-boxes and the Pho4p bHLH protein, which is known to be required for phosphate-specific regulation. Lastly, the data show that the Hms1p and Sgc1p bHLH proteins also play important roles in repression of CIT2-lacZ expression. Collectively, these results support the model that yeast bHLH proteins coordinate different biological pathways.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D051778 Basic Helix-Loop-Helix Leucine Zipper Transcription Factors A family of transcription factors that contain regions rich in basic residues, LEUCINE ZIPPER domains, and HELIX-LOOP-HELIX MOTIFS. BHLH-Zip Transcription Factors,BHLHLZ Transcription Factors,BHLH Zip Transcription Factors,Basic Helix Loop Helix Leucine Zipper Transcription Factors,Transcription Factors, BHLH-Zip,Transcription Factors, BHLHLZ
D051792 Basic Helix-Loop-Helix Transcription Factors A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF. Basic Helix-Loop-Helix Transcription Factor,bHLH Protein,bHLH Transcription Factor,bHLH Proteins,bHLH Transcription Factors,Basic Helix Loop Helix Transcription Factor,Basic Helix Loop Helix Transcription Factors,Factor, bHLH Transcription,Protein, bHLH,Transcription Factor, bHLH,Transcription Factors, bHLH
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

Linan Chen, and John M Lopes
August 2021, Nature communications,
Linan Chen, and John M Lopes
May 2001, Biochemical and biophysical research communications,
Linan Chen, and John M Lopes
December 2011, Autophagy,
Linan Chen, and John M Lopes
January 2020, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!