Isolation and characterization of a cDNA clone encoding an 18-kDa hydrophobic photosystem I subunit (PSI-L) from barley (Hordeum vulgare L.). 1991

J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
Department of Plant Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Copenhagen, Denmark.

Photosystem I in barley contains a polypeptide with an apparent molecular mass of 14 kDa. The polypeptide is N-terminally blocked to amino acid sequencing, but partial amino acid sequences have been determined from three fragments obtained by chemical and enzymatic cleavage. Using an oligonucleotide probe specifying this amino acid sequence, a full length cDNA clone was isolated. The deduced amino acid sequence does not correspond to any previously identified photosystem I subunit. We designate the novel photosystem I subunit PSI-L and the corresponding nuclear gene PsaL. The cDNA clone encodes a precursor polypeptide of 209 amino acid residues with a deduced molecular mass of 22,210 Da. The precursor has a transit peptide typical of proteins imported into chloroplasts. Based on a putative maturation site, the deduced molecular mass of the mature protein is 18 kDa. The PSI-L polypeptide is hydrophobic and predicted to have at least two membrane-spanning alpha-helices. Northern blot analysis shows that the expression of the PsaL gene is light-induced similar to other of the barley photosystem I genes. Southern blot analysis indicates that PsaL is a single copy gene. Partial amino acid sequences of an N-terminally blocked 9-kDa polypeptide show high sequence similarity to the PSI-G polypeptide of spinach and Chlamydomonas reinhardtii. The gene product of PsaG in spinach has previously been assigned as subunit V (Steppuhn, J., Hermans, J., Nechushtai, R., Ljungberg, U., Thümmler, F., Lottspeich, F., and Herrmann, R. G. (1988) FEBS Lett. 237, 218-224). The present study suggests that PSI-L is equivalent to subunit V and that PSI-G is a subunit migrating closely to PSI-H (subunit VI) and PSI-C (subunit VII).

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001467 Hordeum A plant genus of the family POACEAE. The EDIBLE GRAIN, barley, is widely used as food. Barley,Hordeum vulgare
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
September 1992, Plant molecular biology,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
January 1993, Plant physiology,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
September 1993, The Journal of biological chemistry,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
October 1994, Plant physiology,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
June 1989, Plant physiology,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
August 1993, Molecular & general genetics : MGG,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
June 2001, Planta,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
September 1988, Plant molecular biology,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
July 1988, Plant molecular biology,
J S Okkels, and H V Scheller, and I Svendsen, and B L Møller
January 1991, Hereditas,
Copied contents to your clipboard!