Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study. 1991

H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103.

To investigate putative axonal guidance mechanisms used by commissural interneurons in the chick embryo spinal cord, we have examined growth cone morphology, the microenvironment through which the growth cones advance, and interactions between growth cones and their surroundings. Growth cones of both early and late developing commissural interneurons were examined. The growth cones were visualized by injection of either horseradish peroxidase (HRP) or the fluorescent dye Di-I. Unlabelled growth cones as well as HRP-labelled growth cones were also examined by electron microscopy. The early developing growth cones project circumferentially without fasciculation until they reach the region of the longitudinal pathway in the contralateral ventral funiculus (CVF). In their trajectory towards the floor plate, axons exhibited elaborate growth cones with filopodia and lamellipodia. They projected between processes of neuroepithelial cells within abundant extracellular spaces. Upon arrival at the ipsilateral ventral funiculus, growth cones did not appear to contact preexisting longitudinal axons. Within the floor plate, the growth cones were less complex and lacked long filopodia and exhibited bulbous or varicose shapes with short processes. Electron microscopic observations of the floor plate at this stage revealed that there was only a small amount of extracellular space and that the basal portion of the floor plate cells were directionally oriented (polarized) in the transverse plane. It is of particular interest that contacts between growth cones and the basement membrane in the floor plate were often observed. When the growth cones reached the contralateral ventrolateral region, they again exhibited an elaborate morphology. Close contacts between growth cones and the preexisting contralateral longitudinal axons were observed. Growth cones advancing in the contralateral longitudinal pathway exhibited various shapes and were observed to contact other axons and processes of neuroepithelial cells. Most of the later developing growth cones of commissural cells exhibited lamellipodial shapes irrespective of their location along the circumferential trajectory. Electron microscopic observations revealed that these late developing growth cones always contacted or fasciculated with preexisting axons and that the cellular environment through which they grow is oriented in such a way that the growth cones appear to be guided in specific directions. Growth cones entering the CVF exhibited more elaborated shapes with ramified lamellipodia that made multiple contacts with preexisting longitudinal axons. The present results indicate that differential axonal guidance mechanisms may be employed along the pathway followed by spinal commissural interneurons and that axons and growth cones projecting along this pathway at different developmental stages employ different mechanisms for pathfinding and guidance.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
August 1991, The Journal of comparative neurology,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
April 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
August 2008, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
June 1975, The Journal of comparative neurology,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
January 1993, Perspectives on developmental neurobiology,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
January 1988, Trends in neurosciences,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
October 1973, Laboratory investigation; a journal of technical methods and pathology,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
January 1971, The Anatomical record,
H Yaginuma, and S Homma, and R Künzi, and R W Oppenheim
January 1974, Histochemistry,
Copied contents to your clipboard!