We present a unified method to generate conformational statistics which can be applied to any of the classical discrete-chain polymer models. The proposed method employs the concepts of Fourier transform and generalized convolution for the group of rigid-body motions in order to obtain probability density functions of chain end-to-end distance. In this paper, we demonstrate the proposed method with three different cases: the freely-rotating model, independent energy model, and interdependent pairwise energy model (the last two are also well-known as the Rotational Isomeric State model). As for numerical examples, for simplicity, we assume homogeneous polymer chains. For the freely-rotating model, we verify the proposed method by comparing with well-known closed-form results for mean-squared end-to-end distance. In the interdependent pairwise energy case, we take polypeptide chains such as polyalanine and polyvaline as examples.
| UI | MeSH Term | Description | Entries |
|---|