Conformation-dependent formation of the G[8-5]U intrastrand cross-link in 5-bromouracil-containing G-quadruplex DNA induced by UVA irradiation. 2010

Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
Department of Chemistry, University of California, Riverside, California 92521-0403, USA.

G-quadruplex motifs are known to be present in telomeres of human and other organisms. Recent bioinformatic studies also revealed the widespread existence of these motifs in promoter regions of human genes. Treatment of cultured cells with 5-bromo-2'-deoxyuridine ((Br)dU) is known to result in the substitution of DNA thymidine with (Br)dU; such replacement has been shown to sensitize cells to killing induced by UV light. Our previous studies revealed that the exposure of (Br)dU-carrying duplex DNA or (Br)dU-treated MCF-7 cells to UVB light could lead to the facile formation of intrastrand cross-link products initiated from (Br)dU. Here we found that the exposure of (Br)dU-bearing G-quadruplex DNA to UVA light could also give rise to the efficient formation of the G[8-5]U intrastrand cross-link, where the C8 of guanine in the external G-tetrad is covalently linked with the C5 of its adjacent 3' uracil in the loop region. In addition, the yield for the cross-link product is dependent on the conformation of the G-quadruplex. Together, the formation of intrastrand cross-link in G-quadruplex motifs may account for the photocytotoxic effect induced by (Br)dU incorporation, and the (Br)dU-mediated photo-cross-linking may constitute a useful method for monitoring the different conformations of G-quadruplex folding.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D001976 Bromouracil 5-Bromo-2,4(1H,3H)-pyrimidinedione. Brominated derivative of uracil that acts as an antimetabolite, substituting for thymine in DNA. It is used mainly as an experimental mutagen, but its deoxyriboside (BROMODEOXYURIDINE) is used to treat neoplasms. 5-Bromouracil,Bromuracil,5 Bromouracil
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006147 Guanine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D014498 Uracil One of four nucleotide bases in the nucleic acid RNA.
D054856 G-Quadruplexes Higher-order DNA and RNA structures formed from guanine-rich sequences. They are formed around a core of at least 2 stacked tetrads of hydrogen-bonded GUANINE bases. They can be formed from one two or four separate strands of DNA (or RNA) and can display a wide variety of topologies, which are a consequence of various combinations of strand direction, length, and sequence. (From Nucleic Acids Res. 2006;34(19):5402-15) DNA G-Quadruplexes,DNA, Quadruplex,G-Quadruplexes, DNA,G-Quadruplexes, RNA,Guanine-Quadruplexes,Guanine-Quartets,Guanine-Tetrads,Quadruplex DNA,RNA, G-Quadruplexes,Tetraplex DNA,DNA G Quadruplexes,DNA, Tetraplex,G Quadruplexes,G Quadruplexes, DNA,G Quadruplexes, RNA,G-Quadruplexes RNA,G-Quadruplexes RNAs,Guanine Quadruplexes,Guanine Quartets,Guanine Tetrads,Guanine-Quartet,Guanine-Tetrad,RNA G-Quadruplexes,RNA, G Quadruplexes,RNAs, G-Quadruplexes

Related Publications

Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
August 2012, Nucleic acids research,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
February 2015, Biochemistry,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
June 2004, Biochemistry,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
June 2005, Biochemistry,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
October 2005, Journal of the American Chemical Society,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
March 1996, Chemical research in toxicology,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
January 2013, Biochemistry,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
October 2008, Free radical biology & medicine,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
July 2007, Biochemistry,
Guangxin Lin, and Jing Zhang, and Yu Zeng, and Hai Luo, and Yinsheng Wang
December 2013, The journal of physical chemistry. B,
Copied contents to your clipboard!