AMPA receptors serum-dependently mediate GABAA receptor alpha1 and alpha6 subunit down-regulation in cultured mouse cerebellar granule cells. 2010

Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
Department of Pharmacology, Drug Development and Therapeutics, University of Turku, FIN-20014 Turku, Finland. mikko.uusi-oukari@utu.fi <mikko.uusi-oukari@utu.fi>

Depolarization of cultured mouse cerebellar granule cells with potassium or kainate results in developmentally arrested state that includes down-regulation of GABA(A) receptor alpha1, alpha6 and beta2 subunit expression. These subunits are normally strongly expressed in cerebellar granule cells from second postnatal week throughout the adulthood. In the present study we demonstrate that selective activation of AMPA subtype of glutamate receptors down-regulates alpha1 and alpha6 subunit mRNA expression. Removal of AMPA agonist from culture medium restores expression of these subunits indicating reversibility of the down-regulation. In serum-free culture medium AMPA receptor activation did not down-regulate alpha1 or alpha6 subunit expression. Furthermore, the down-regulation was strongly attenuated when the cells were cultured in the presence of dialysed fetal calf serum. The results indicate that down-regulation of GABA(A) receptor alpha1 and alpha6 subunits by AMPA receptor activation is dependent on the presence of low molecular weight compounds present in fetal calf serum. In order to study mouse cerebellar granule cell maturation and/or regulation of GABA(A) receptor subunit expression in culture, the experiments should be performed in the absence of fetal calf serum.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011744 Pyrimidinones Heterocyclic compounds known as 2-pyrimidones (or 2-hydroxypyrimidines) and 4-pyrimidones (or 4-hydroxypyrimidines) with the general formula C4H4N2O. Pyrimidinone,Pyrimidone,Pyrimidones
D011810 Quinoxalines Quinoxaline
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D000097806 GluK2 Kainate Receptor A high-affinity KAINATE and GLUTAMATE receptor that functions as ligand-gated ion channel in the CENTRAL NERVOUS SYSYEM and plays an essential role in NEURONAL PLASTICITY. GluR6 Kainate Receptor,GluR6 Kainate Receptors,GluR6 Receptor,Ionotropic Glutamate Receptor GluR6,Receptor, GluK2 Kainate,Receptor, GluR6,Receptor, GluR6 Kainate,Receptors, GluR6 Kainate

Related Publications

Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
July 2004, Neuroscience letters,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
July 1996, Journal of neurochemistry,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
January 2002, Journal of neurochemistry,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
February 2000, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
October 2007, The Journal of biological chemistry,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
January 2004, Cerebellum (London, England),
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
January 2008, Journal of neurochemistry,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
December 1996, Brain research. Developmental brain research,
Mikko Uusi-Oukari, and Leena-Stiina Kontturi, and Sampsa A Kallinen, and Virpi Salonen
July 1996, British journal of pharmacology,
Copied contents to your clipboard!