Antioxidant systems of brown trout (Salmo trutta f. fario) semen. 2010

Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, Austria. franz.lahnsteiner@sbg.ac.at

The present study characterizes the antioxidant systems of brown trout, Salmo trutta, semen as supplementation of semen dilution media with antioxidants can be beneficial to improve techniques for semen storage and cryopreservation. Antioxidants and oxidant defensive enzymes of spermatozoa and seminal plasma were analyzed. To determine whether antioxidants and oxidant defensive enzymes have an effect on sperm functionality, in vitro experiments were performed. Selected antioxidants and oxidant defensive enzymes were added to sperm motility-inhibiting saline solution and their effects on sperm viability (motility when activated, membrane integrity, and lipid peroxidation) were measured. In seminal plasma and spermatozoa the enzymes catalase, glutathione reductase, methionine sulfoxide reductase, peroxidase, and superoxide dismutase and the metabolites ascorbic acid, glutathione, methionine, tocopherol, and uric acid were detected. Of the enzymes superoxide dismutase had the highest activity, of the metabolites uric acid occurred in highest concentrations. During in vitro incubation uric acid and catalase increased the sperm motility, sperm membrane integrity, and decreased the sperm lipid peroxidation in comparison to the control. However, catalase was effective only at an activity much higher than that occurring in seminal plasma. Reduced methionine increased the sperm motility and sperm membrane integrity and oxidized methionine the motility. However, neither reduced nor oxidized methionine decreased the sperm membrane lipid peroxidation. It is concluded, that uric acid is the main antioxidant of brown trout semen.

UI MeSH Term Description Entries
D008297 Male Males
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009195 Peroxidase A hemeprotein from leukocytes. Deficiency of this enzyme leads to a hereditary disorder coupled with disseminated moniliasis. It catalyzes the conversion of a donor and peroxide to an oxidized donor and water. EC 1.11.1.7. Myeloperoxidase,Hemi-Myeloperoxidase,Hemi Myeloperoxidase
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D005980 Glutathione Reductase Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2. Glutathione-Disulfide Reductase,Reductase, Glutathione,Reductase, Glutathione-Disulfide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium

Related Publications

Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
October 2008, Ecotoxicology and environmental safety,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
December 2010, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
November 2005, Aquatic toxicology (Amsterdam, Netherlands),
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
November 2005, Biochimica et biophysica acta,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
December 2016, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
November 2016, Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
April 2001, Histology and histopathology,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
January 1998, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
December 2019, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
Franz Lahnsteiner, and Nabil Mansour, and Kristjan Plaetzer
September 2020, Chemosphere,
Copied contents to your clipboard!