Accuracy of gray-scale coding in lung sound mapping. 2010

Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
Cleveland Clinic, OH 44195, United States. MEHTAA1@ccf.org <MEHTAA1@ccf.org>

Stethoscope evaluation of the lungs is widely accepted and practiced; however, there are some widely recognized, major limitations with its use. A safe device that helped solve these limitations by translating sound into objective, quantifiable images would have clinical utility. Translating lung sounds into quantifiable images in which regional differences or asymmetry in intensities of breath sounds are presented as gradients in gray-scale is not a trivial process. Healthy lungs and lung pathology are characterized by different patterns of regional breath sound distribution and, therefore, the accuracy of mapping gray-scale images must be ensured in a controlled systematic fashion prior to clinical use of such a technique. Vibration response imaging (VRI) maps lung sounds from 40 sensors to a two-dimensional gray-scale image. To assess mapping accuracy, a simulated lung sound map with uniform signals was compared to modified maps where sound signals were reduced (1-3db) at one sensor. Also, 8 readers evaluated the gray-scale images. The computer algorithm accurately displayed gray-scale coding changes in correct locations in 97% of images. There was 95+/-4% accuracy rate by readers to correctly identify gray-scale changes. In addition, quantitative data at different stages of signal processing were investigated in a LSM of a subject with asthma. Signal processing was 97% accurate overall in that the gray-scale values from which the image was derived corresponded with intensity values from recorded signals. These results suggest VRI accurately maps acoustic signals to a gray-scale image and that trained readers can detect small changes.

UI MeSH Term Description Entries
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D012135 Respiratory Sounds Noises, normal and abnormal, heard on auscultation over any part of the RESPIRATORY TRACT. Breathing Sounds,Crackles,Lung Sounds,Pleural Rub,Rales,Rhonchi,Stridor,Wheezing,Breathing Sound,Crackle,Lung Sound,Pleural Rubs,Rale,Respiratory Sound,Rhonchus,Rub, Pleural,Sound, Breathing,Sound, Lung,Sound, Respiratory,Sounds, Breathing,Sounds, Lung,Stridors,Wheezings
D003936 Diagnosis, Computer-Assisted Application of computer programs designed to assist the physician in solving a diagnostic problem. Computer-Assisted Diagnosis,Computer Assisted Diagnosis,Computer-Assisted Diagnoses,Diagnoses, Computer-Assisted,Diagnosis, Computer Assisted
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001249 Asthma A form of bronchial disorder with three distinct components: airway hyper-responsiveness (RESPIRATORY HYPERSENSITIVITY), airway INFLAMMATION, and intermittent AIRWAY OBSTRUCTION. It is characterized by spasmodic contraction of airway smooth muscle, WHEEZING, and dyspnea (DYSPNEA, PAROXYSMAL). Asthma, Bronchial,Bronchial Asthma,Asthmas
D001314 Auscultation Act of listening for sounds within the body. Auscultations
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
November 1976, AJR. American journal of roentgenology,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
January 1977, Radiology,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
March 2016, Scientific reports,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
September 1975, Journal of clinical ultrasound : JCU,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
June 2014, AJR. American journal of roentgenology,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
July 2021, Muscle & nerve,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
February 1979, Radiology,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
May 2006, AJR. American journal of roentgenology,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
June 1982, Radiology,
Atul C Mehta, and Merav Gat, and Shlomit Mann, and J Mark Madison
September 1970, Nihon Jibiinkoka Gakkai kaiho,
Copied contents to your clipboard!