Nucleosomal context of binding sites influences transcription factor binding affinity and gene regulation. 2009

Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
Electronic Department, Sun Yat-Sen University, Guangzhou 510006, China.

Transcription factor (TF) binding to its DNA target site plays an essential role in gene regulation. The location, orientation and spacing of transcription factor binding sites (TFBSs) also affect regulatory function of the TF. However, how nucleosomal context of TFBSs influences TF binding and subsequent gene regulation remains to be elucidated. Using genome-wide nucleosome positioning and TF binding data in budding yeast, we found that binding affinities of TFs to DNA tend to decrease with increasing nucleosome occupancy of the associated binding sites. We further demonstrated that nucleosomal context of binding sites is correlated with gene regulation of the corresponding TF. Nucleosome-depleted TFBSs are linked to high gene activity and low expression noise, whereas nucleosome-covered TFBSs are associated with low gene activity and high expression noise. Moreover, nucleosome-covered TFBSs tend to disrupt coexpression of the corresponding TF target genes. We conclude that nucleosomal context of binding sites influences TF binding affinity, subsequently affecting the regulation of TFs on their target genes. This emphasizes the need to include nucleosomal context of TFBSs in modeling gene regulation.

UI MeSH Term Description Entries
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D016681 Genome, Fungal The complete gene complement contained in a set of chromosomes in a fungus. Fungal Genome,Fungal Genomes,Genomes, Fungal

Related Publications

Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
January 2002, In silico biology,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
January 2021, Nucleic acids research,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
December 2011, Nature reviews. Genetics,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
March 2020, Journal of chemical information and modeling,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
November 2008, BMC bioinformatics,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
August 2007, Biotechnology and bioengineering,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
December 2013, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
October 2019, Annual review of cell and developmental biology,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
October 2018, Journal of theoretical biology,
Zhiming Dai, and Xianhua Dai, and Qian Xiang, and Jihua Feng
January 2013, Molecular cell,
Copied contents to your clipboard!