The past decade in malaria synthetic peptide vaccine clinical trials. 2010

Elizabeth Nardin
Department of Medical Parasitology, New York University School of Medicine, New York, NY, USA. Elizabeth.Nardin@nyumc.org

Over the past decade (2000-2009), there have been nine clinical trials of synthetic malaria peptide vaccines designed to target the pre-erythrocytic and erythrocytic stages of the Plasmodium falciparum parasite. Recent advances in parasite immunology and cell biology have been utilized to improve peptide design and adjuvant formulations. The clinical trials demonstrated the potential of second generation peptide vaccines to elicit antibodies that can neutralize sporozoite infectivity and cooperate with monocytes in ADCI to inhibit blood stage parasites. In addition, peptide-induced malaria-specific human CD4(+) and CD8(+) T cells were shown in vitro to have similar fine specificity and function as parasite-induced T cells. The results of these clinical trials, while encouraging, have emphasized the critical roles of immunological assays, in particular functional assays, for the evaluation of potential vaccine candidates. Additional challenges include the need for potent adjuvants for the development of synthetic peptide vaccines that can effectively target multiple stages of the Plasmodium parasite.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D002986 Clinical Trials as Topic Works about pre-planned studies of the safety, efficacy, or optimum dosage schedule (if appropriate) of one or more diagnostic, therapeutic, or prophylactic drugs, devices, or techniques selected according to predetermined criteria of eligibility and observed for predefined evidence of favorable and unfavorable effects. This concept includes clinical trials conducted both in the U.S. and in other countries. Clinical Trial as Topic
D004341 Drug Evaluation Any process by which toxicity, metabolism, absorption, elimination, preferred route of administration, safe dosage range, etc., for a drug or group of drugs is determined through clinical assessment in humans or veterinary animals. Evaluation Studies, Drug,Drug Evaluation Studies,Drug Evaluation Study,Drug Evaluations,Evaluation Study, Drug,Evaluation, Drug,Evaluations, Drug,Studies, Drug Evaluation,Study, Drug Evaluation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000276 Adjuvants, Immunologic Substances that augment, stimulate, activate, potentiate, or modulate the immune response at either the cellular or humoral level. The classical agents (Freund's adjuvant, BCG, Corynebacterium parvum, et al.) contain bacterial antigens. Some are endogenous (e.g., histamine, interferon, transfer factor, tuftsin, interleukin-1). Their mode of action is either non-specific, resulting in increased immune responsiveness to a wide variety of antigens, or antigen-specific, i.e., affecting a restricted type of immune response to a narrow group of antigens. The therapeutic efficacy of many biological response modifiers is related to their antigen-specific immunoadjuvanticity. Immunoactivators,Immunoadjuvant,Immunoadjuvants,Immunologic Adjuvant,Immunopotentiator,Immunopotentiators,Immunostimulant,Immunostimulants,Adjuvant, Immunologic,Adjuvants, Immunological,Immunologic Adjuvants,Immunological Adjuvant,Adjuvant, Immunological,Immunological Adjuvants
D000913 Antibodies, Protozoan Immunoglobulins produced in a response to PROTOZOAN ANTIGENS. Protozoan Antibodies
D014614 Vaccines, Synthetic Small synthetic peptides that mimic surface antigens of pathogens and are immunogenic, or vaccines manufactured with the aid of recombinant DNA techniques. The latter vaccines may also be whole viruses whose nucleic acids have been modified. Antigens, Synthetic,Chemical Vaccine,Chemical Vaccines,Immunogens, Synthetic,Molecular Vaccine,Molecular Vaccines,Recombinant Vaccine,Semisynthetic Vaccine,Semisynthetic Vaccines,Synthetic Antigen,Synthetic Vaccine,Synthetic Vaccines,Vaccines, Recombinant,Synthetic Antigens,Synthetic Immunogens,Vaccines, Chemical,Vaccines, Molecular,Vaccines, Semisynthetic,Antigen, Synthetic,Recombinant Vaccines,Vaccine, Chemical,Vaccine, Molecular,Vaccine, Recombinant,Vaccine, Semisynthetic,Vaccine, Synthetic
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D016778 Malaria, Falciparum Malaria caused by PLASMODIUM FALCIPARUM. This is the severest form of malaria and is associated with the highest levels of parasites in the blood. This disease is characterized by irregularly recurring febrile paroxysms that in extreme cases occur with acute cerebral, renal, or gastrointestinal manifestations. Plasmodium falciparum Malaria,Malaria, Plasmodium falciparum

Related Publications

Elizabeth Nardin
January 2023, Journal of long-term effects of medical implants,
Elizabeth Nardin
November 1987, The Journal of experimental medicine,
Elizabeth Nardin
August 2015, Current opinion in immunology,
Elizabeth Nardin
September 2009, Reviews on recent clinical trials,
Elizabeth Nardin
August 1999, Parasitology today (Personal ed.),
Elizabeth Nardin
September 1988, Science (New York, N.Y.),
Elizabeth Nardin
January 2002, Chemical immunology,
Elizabeth Nardin
January 2023, Frontiers in immunology,
Copied contents to your clipboard!