| D008969 |
Molecular Sequence Data |
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. |
Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular |
|
| D009154 |
Mutation |
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. |
Mutations |
|
| D010957 |
Plasmids |
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. |
Episomes,Episome,Plasmid |
|
| D003062 |
Codon |
A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). |
Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons |
|
| D004926 |
Escherichia coli |
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. |
Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli |
|
| D005798 |
Genes, Bacterial |
The functional hereditary units of BACTERIA. |
Bacterial Gene,Bacterial Genes,Gene, Bacterial |
|
| D001483 |
Base Sequence |
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. |
DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA |
|
| D012360 |
RNA, Transfer, Phe |
A transfer RNA which is specific for carrying phenylalanine to sites on the ribosomes in preparation for protein synthesis. |
Phenylalanine-Specific tRNA,Transfer RNA, Phe,tRNAPhe,tRNA(Phe),Phe Transfer RNA,Phenylalanine Specific tRNA,RNA, Phe Transfer,tRNA, Phenylalanine-Specific |
|
| D016133 |
Polymerase Chain Reaction |
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. |
Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain |
|
| D016153 |
Genes, Suppressor |
Genes that have a suppressor allele or suppressor mutation (SUPPRESSION, GENETIC) which cancels the effect of a previous mutation, enabling the wild-type phenotype to be maintained or partially restored. For example, amber suppressors cancel the effect of an AMBER NONSENSE MUTATION. |
Amber Suppressor Genes,Frameshift Suppressor Genes,Genes, Amber Suppressor,Genes, Frameshift Suppressor,Genes, Nonsense Mutation Suppressor,Genes, Ochre Suppressor,Genes, Second-Site Suppressor,Nonsense Mutation Suppressor Genes,Ochre Suppressor Genes,Second-Site Suppressor Genes,Genes, Opal Suppressor,Suppressor Genes,Amber Suppressor Gene,Frameshift Suppressor Gene,Gene, Amber Suppressor,Gene, Frameshift Suppressor,Gene, Ochre Suppressor,Gene, Opal Suppressor,Gene, Second-Site Suppressor,Gene, Suppressor,Genes, Second Site Suppressor,Ochre Suppressor Gene,Opal Suppressor Gene,Opal Suppressor Genes,Second Site Suppressor Genes,Second-Site Suppressor Gene,Suppressor Gene,Suppressor Gene, Amber,Suppressor Gene, Frameshift,Suppressor Gene, Ochre,Suppressor Gene, Opal,Suppressor Gene, Second-Site,Suppressor Genes, Amber,Suppressor Genes, Frameshift,Suppressor Genes, Ochre,Suppressor Genes, Opal,Suppressor Genes, Second-Site |
|