Suppression of a double missense mutation by a mutant tRNA(Phe) in Escherichia coli. 1991

D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
Institut de Biologie Physico-Chimique, Paris, France.

We report here the isolation of a mutant tRNAPhe that suppresses a double missense auxotrophic mutation in trpA of Escherichia coli, trpA218. The doubly mutant protein product differs from wild-type TrpA by the replacements of Phe22 by Leu and Gly211 by Ser. A partial revertant TrpA phenotype can be obtained from trpA218 by changing either Leu22 back to Phe or Ser211 back to Gly. Translational suppressors were previously obtained that act at codon 211, replacing the Ser211 in the TrpA218 protein, presumably with Gly. In the present study, we selected for trpA218 suppressors caused by mutation of a cloned tRNAPhe gene, pheV. DNA sequence analysis of the suppressor isolated reveals a singular structural alteration, changing the anticodon from 5'-GAA-3' to 5'-GAG-3'. Sequencing of trpA218 confirmed the likely identity of Leu22 as CUC. The new missense suppressor, designated pheV(SuCUC), is lethal to the cell when highly expressed, as from a high copy number plasmid. This may be due to efficient replacement of Leu by Phe at CUC (and, probably, CUU) codons throughout the genome. We anticipate that pheV(SuCUC) will prove, like other missense suppressors, to be extremely useful in studies on the specificity and accuracy of decoding.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012360 RNA, Transfer, Phe A transfer RNA which is specific for carrying phenylalanine to sites on the ribosomes in preparation for protein synthesis. Phenylalanine-Specific tRNA,Transfer RNA, Phe,tRNAPhe,tRNA(Phe),Phe Transfer RNA,Phenylalanine Specific tRNA,RNA, Phe Transfer,tRNA, Phenylalanine-Specific
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D016153 Genes, Suppressor Genes that have a suppressor allele or suppressor mutation (SUPPRESSION, GENETIC) which cancels the effect of a previous mutation, enabling the wild-type phenotype to be maintained or partially restored. For example, amber suppressors cancel the effect of an AMBER NONSENSE MUTATION. Amber Suppressor Genes,Frameshift Suppressor Genes,Genes, Amber Suppressor,Genes, Frameshift Suppressor,Genes, Nonsense Mutation Suppressor,Genes, Ochre Suppressor,Genes, Second-Site Suppressor,Nonsense Mutation Suppressor Genes,Ochre Suppressor Genes,Second-Site Suppressor Genes,Genes, Opal Suppressor,Suppressor Genes,Amber Suppressor Gene,Frameshift Suppressor Gene,Gene, Amber Suppressor,Gene, Frameshift Suppressor,Gene, Ochre Suppressor,Gene, Opal Suppressor,Gene, Second-Site Suppressor,Gene, Suppressor,Genes, Second Site Suppressor,Ochre Suppressor Gene,Opal Suppressor Gene,Opal Suppressor Genes,Second Site Suppressor Genes,Second-Site Suppressor Gene,Suppressor Gene,Suppressor Gene, Amber,Suppressor Gene, Frameshift,Suppressor Gene, Ochre,Suppressor Gene, Opal,Suppressor Gene, Second-Site,Suppressor Genes, Amber,Suppressor Genes, Frameshift,Suppressor Genes, Ochre,Suppressor Genes, Opal,Suppressor Genes, Second-Site

Related Publications

D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
October 1987, European journal of biochemistry,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
June 2001, Microbiology (Reading, England),
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
December 1971, European journal of biochemistry,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
May 1969, Genetics,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
August 1994, Molecular microbiology,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
June 1979, Biochemistry,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
March 1976, Mutation research,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
January 1974, Methods in enzymology,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
January 1982, Molecular & general genetics : MGG,
D Pages, and K Hijazi, and E J Murgola, and J Finelli, and R H Buckingham
July 1980, Journal of bacteriology,
Copied contents to your clipboard!