Analysis of integrin turnover in fly myotendinous junctions. 2010

Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada.

Transient (short-term) cell adhesion underlies dynamic processes such as cell migration, whereas stable (long-term) cell adhesion maintains tissue architecture. Ongoing adhesion complex turnover is essential for transient cell adhesion, but it is not known whether turnover is also required for maintenance of long-term adhesion. We used fluorescence recovery after photobleaching to analyze the dynamics of an integrin adhesion complex (IAC) in a model of long-term cell-ECM adhesion, myotendinous junctions (MTJs), in fly embryos and larvae. We found that the IAC undergoes turnover in MTJs and that this process is mediated by clathrin-dependent endocytosis. Moreover, the small GTPase Rab5 can regulate the proportion of IAC components that undergo turnover. Also, altering Rab5 activity weakened MTJs, resulting in muscle defects. In addition, growth of MTJs was concomitant with a decrease in the proportion of IAC components undergoing turnover. We propose that IAC turnover is tightly regulated in long-term cell-ECM adhesions to allow normal tissue growth and maintenance.

UI MeSH Term Description Entries
D008018 Life Cycle Stages The continuous sequence of changes undergone by living organisms during the post-embryonic developmental process, such as metamorphosis in insects and amphibians. This includes the developmental stages of apicomplexans such as the malarial parasite, PLASMODIUM FALCIPARUM. Life Cycle,Life History Stages,Cycle, Life,Cycles, Life,History Stage, Life,History Stages, Life,Life Cycle Stage,Life Cycles,Life History Stage,Stage, Life Cycle,Stage, Life History,Stages, Life Cycle,Stages, Life History
D008840 Microfilament Proteins Monomeric subunits of primarily globular ACTIN and found in the cytoplasmic matrix of almost all cells. They are often associated with microtubules and may play a role in cytoskeletal function and/or mediate movement of the cell or the organelles within the cell. Actin Binding Protein,Actin-Binding Protein,Actin-Binding Proteins,Microfilament Protein,Actin Binding Proteins,Binding Protein, Actin,Protein, Actin Binding,Protein, Actin-Binding,Protein, Microfilament,Proteins, Actin-Binding,Proteins, Microfilament
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000070876 Tensins A family of multidomain microfilament proteins that bind ACTIN FILAMENTS and INTEGRINS at FOCAL ADHESIONS. They generally consist of an N-terminal domain with homology to PHOSPHOTYROSINE PHOSPHATASE, a C2 DOMAIN; unique central regions rich in PROLINE; ALANINE; GLYCINE; and SERINE; an SH2 DOMAIN; and a C-terminal phosphotyrosine-binding region. They are involved in CELL MIGRATION; CELL ADHESION; SIGNAL TRANSDUCTION; and reorganization of the CYTOSKELETON. Tensin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013710 Tendons Fibrous bands or cords of CONNECTIVE TISSUE at the ends of SKELETAL MUSCLE FIBERS that serve to attach the MUSCLES to bones and other structures. Endotenon,Epotenon,Tendons, Para-Articular,Tendons, Paraarticular,Endotenons,Epotenons,Para-Articular Tendon,Para-Articular Tendons,Paraarticular Tendon,Paraarticular Tendons,Tendon,Tendon, Para-Articular,Tendon, Paraarticular,Tendons, Para Articular

Related Publications

Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
October 1986, The Journal of cell biology,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
April 1992, Experimental cell research,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
March 2008, The Journal of cell biology,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
February 2021, Investigative ophthalmology & visual science,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
February 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
March 2003, Human molecular genetics,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
January 1986, Cell and tissue research,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
June 1994, Developmental biology,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
April 1993, Microscopy research and technique,
Lin Yuan, and Michael J Fairchild, and Alexander D Perkins, and Guy Tanentzapf
March 1993, Scanning microscopy,
Copied contents to your clipboard!