Noble gas xenon is a novel adenosine triphosphate-sensitive potassium channel opener. 2010

Carsten Bantel, and Mervyn Maze, and Stefan Trapp
Department of Surgery and Cancer, Anaesthetics, Pain Medicine and Intensive Care Section, Blackett Laboratory, Imperial College London. London SW7 2AZ, United Kingdom.

BACKGROUND Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K channel openers is hampered by their inability to cross the blood-brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. METHODS To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. RESULTS Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration-inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 +/- 4 to 96 +/- 6 microm. CONCLUSIONS Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood-brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke.

UI MeSH Term Description Entries
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014978 Xenon A noble gas with the atomic symbol Xe, atomic number 54, and atomic weight 131.30. It is found in the earth's atmosphere and has been used as an anesthetic.
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D054086 KATP Channels Heteromultimers of Kir6 channels (the pore portion) and sulfonylurea receptor (the regulatory portion) which affect function of the HEART; PANCREATIC BETA CELLS; and KIDNEY COLLECTING DUCTS. KATP channel blockers include GLIBENCLAMIDE and mitiglinide whereas openers include CROMAKALIM and minoxidil sulfate. ATP-Sensitive Potassium Channel,ATP-Sensitive Potassium Channels,KATP Channel,ATP Sensitive Potassium Channel,ATP Sensitive Potassium Channels,Channel, ATP-Sensitive Potassium,Channel, KATP,Channels, ATP-Sensitive Potassium,Channels, KATP,Potassium Channel, ATP-Sensitive,Potassium Channels, ATP-Sensitive

Related Publications

Carsten Bantel, and Mervyn Maze, and Stefan Trapp
September 1998, The Annals of thoracic surgery,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
August 2000, The Annals of thoracic surgery,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
September 2010, Journal of cardiovascular pharmacology,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
November 1996, The Journal of thoracic and cardiovascular surgery,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
August 1993, The Journal of thoracic and cardiovascular surgery,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
October 2001, The Journal of thoracic and cardiovascular surgery,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
February 1997, The Journal of pharmacology and experimental therapeutics,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
September 1994, The Journal of thoracic and cardiovascular surgery,
Carsten Bantel, and Mervyn Maze, and Stefan Trapp
March 2011, Expert opinion on therapeutic patents,
Copied contents to your clipboard!