Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans. 2010

B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
Oral Imaging Centre, Department of Oral Pathology and Maxillofacial Surgery, Katholieke Universiteit Leuven, Leuven, Belgium.

The use of three-dimensional (3D) models of the dentition obtained from cone beam computed tomography (CBCT) is becoming increasingly more popular in dentistry. A recent trend is to replace the traditional dental casts with digital CBCT models for diagnosis, treatment planning and simulation. The accuracy of these models was previously assessed through comparing linear physical and radiographical measurements. However, this assessment technique is both observer and landmark dependent. The accuracy of 3D CBCT teeth reconstructions is yet to be reliably measured. To assess the accuracy of 3D CBCT reconstructions of the teeth using a semi-automated and observer-independent method and to assess the influence of field of view (FoV) selection on reconstruction accuracy. Fully dentate upper and lower dry human jaws, placed in a plastic box and immersed in water, were scanned using CBCT with small, medium and large FoV. The teeth were then scanned separately using MicroCT. Cone beam computed tomography and MicroCT 3D teeth models were compared, and mean surface difference was calculated per tooth for each FoV. Mean and (maximum) differences between MicroCT and CBCT were 120 +/- 40 (max. 679) microm, 157 +/- 39 (max. 824) micro and 207 +/- 80 (max. 862) microm for the small, medium and large FoV, respectively. Cone beam computed tomography models were larger than MicroCT because of larger voxel size. Our results indicate that CBCT may provide accurate 3D reconstructions of the teeth that can be useful for some clinical applications.

UI MeSH Term Description Entries
D009811 Odontometry Measurement of tooth characteristics.
D002102 Cadaver A dead body, usually a human body. Corpse,Cadavers,Corpses
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003765 Models, Dental Presentation devices used for patient education and technique training in dentistry. Dental Models,Dental Model,Model, Dental
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014070 Tooth One of a set of bone-like structures in the mouth used for biting and chewing. Teeth
D054893 Cone-Beam Computed Tomography Computed tomography modalities which use a cone or pyramid-shaped beam of radiation. CAT Scan, Cone-Beam,Cone-Beam CT,Tomography, Cone-Beam Computed,Tomography, Volume Computed,CT Scan, Cone-Beam,Cone-Beam Computer-Assisted Tomography,Cone-Beam Computerized Tomography,Volume CT,Volume Computed Tomography,Volumetric CT,Volumetric Computed Tomography,CAT Scan, Cone Beam,CAT Scans, Cone-Beam,CT Scan, Cone Beam,CT Scans, Cone-Beam,CT, Cone-Beam,CT, Volume,CT, Volumetric,Computed Tomography, Cone-Beam,Computed Tomography, Volume,Computed Tomography, Volumetric,Computer-Assisted Tomography, Cone-Beam,Computerized Tomography, Cone-Beam,Cone Beam CT,Cone Beam Computed Tomography,Cone Beam Computer Assisted Tomography,Cone Beam Computerized Tomography,Cone-Beam CAT Scan,Cone-Beam CAT Scans,Cone-Beam CT Scan,Cone-Beam CT Scans,Scan, Cone-Beam CAT,Scan, Cone-Beam CT,Scans, Cone-Beam CAT,Scans, Cone-Beam CT,Tomography, Cone Beam Computed,Tomography, Cone-Beam Computer-Assisted,Tomography, Cone-Beam Computerized,Tomography, Volumetric Computed
D055114 X-Ray Microtomography X-RAY COMPUTERIZED TOMOGRAPHY with resolution in the micrometer range. MicroCT,Microcomputed Tomography,X-Ray Micro-CAT Scans,X-Ray Micro-CT,X-Ray Micro-CT Scans,X-Ray Micro-Computed Tomography,X-Ray Microcomputed Tomography,X-ray MicroCT,Xray Micro-CT,Xray MicroCT,Micro-CAT Scan, X-Ray,Micro-CAT Scans, X-Ray,Micro-CT Scan, X-Ray,Micro-CT Scans, X-Ray,Micro-CT, X-Ray,Micro-CT, Xray,Micro-CTs, X-Ray,Micro-CTs, Xray,Micro-Computed Tomography, X-Ray,MicroCT, X-ray,MicroCT, Xray,MicroCTs,MicroCTs, X-ray,MicroCTs, Xray,Microcomputed Tomography, X-Ray,Microtomography, X-Ray,Scan, X-Ray Micro-CAT,Scan, X-Ray Micro-CT,Scans, X-Ray Micro-CAT,Scans, X-Ray Micro-CT,Tomography, Microcomputed,Tomography, X-Ray Micro-Computed,Tomography, X-Ray Microcomputed,X Ray Micro CAT Scans,X Ray Micro CT,X Ray Micro CT Scans,X Ray Micro Computed Tomography,X Ray Microcomputed Tomography,X Ray Microtomography,X ray MicroCT,X-Ray Micro-CAT Scan,X-Ray Micro-CT Scan,X-Ray Micro-CTs,X-ray MicroCTs,Xray Micro CT,Xray Micro-CTs,Xray MicroCTs
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
June 2016, Chinese medical journal,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
August 2009, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
June 2015, The Journal of craniofacial surgery,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
November 2022, The Angle orthodontist,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
September 2015, The Journal of craniofacial surgery,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
December 2010, Journal of dental research,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
September 2023, Journal of visualized experiments : JoVE,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
April 2012, Clinical oral implants research,
B Al-Rawi, and B Hassan, and B Vandenberge, and R Jacobs
March 2012, Clinical anatomy (New York, N.Y.),
Copied contents to your clipboard!