Characterization and modulation of rat small intestinal brush-border membrane transbilayer fluidity. 1991

P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
Department of Medicine, University of Chicago, Illinois 60637.

In the present experiments, selective quenching by trinitrophenyl groups as well as steady-state fluorescence polarization and differential polarized phase fluorescence techniques, using three different lipid soluble fluorophores, were used to directly examine the fluidity of the exofacial and cytofacial leaflets of rat small intestinal brush-border membranes. These studies revealed that the fluidity of the exofacial hemileaflet was greater than the cytofacial hemileaflet. Differences in the distribution of phosphatidylcholine and phosphatidylethanolamine, as assessed by phospholipase A2 treatment and trinitrophenylation of aminophospholipids, were, at least partially, responsible for the asymmetrical fluidity of the hemileaflets. Moreover, in vitro addition of benzyl alcohol (final concn 25 mM) preferentially fluidized the exofacial leaflet and concomitantly decreased leucine aminopeptidase activity but did not affect the activities of maltase, sucrase, alkaline phosphatase, or gamma-glutamyltranspeptidase. In vivo addition of the membrane-mobility agent 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanate] (A2C) (final concn 7.5 microM) preferentially fluidized the cytofacial leaflet and increased Na(+)-gradient-dependent D-glucose transport but not Na(+)-gradient-dependent L-leucine transport.

UI MeSH Term Description Entries
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008297 Male Males
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011318 Prilocaine A local anesthetic that is similar pharmacologically to LIDOCAINE. Currently, it is used most often for infiltration anesthesia in dentistry. Propitocaine,Citanest,Citanest Octapressin,Prilocaine Hydrochloride,Xylonest
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat

Related Publications

P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
March 1988, Biochimica et biophysica acta,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
October 1995, Indian journal of biochemistry & biophysics,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
January 1986, Pediatric research,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
February 1989, Biochimica et biophysica acta,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
June 1990, The Journal of surgical research,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
March 1995, The Journal of biological chemistry,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
December 1987, The Biochemical journal,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
March 1989, The Journal of pharmacy and pharmacology,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
March 1995, Biochimica et biophysica acta,
P K Dudeja, and R K Wali, and J M Harig, and T A Brasitus
October 1994, Pharmaceutical research,
Copied contents to your clipboard!