O-GlcNAcylation, an original modulator of contractile activity in striated muscle. 2009

C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
Université Lille Nord de France, 59000 Lille, France.

There is growing evidence that O-linked N-acetyl-D-glucosaminylation, more simply termed O-GlcNAcylation or O-GlcNAc, is a post-translational modification involved in many cellular processes from transcription to modulation of protein properties. O-GlcNAc is a dynamic and reversible glycosylation and therefore quite similar to the phosphorylation/dephosphorylation process, with which O-GlcNAc can interplay. Since O-GlcNAc serves as a glucose sensor by the way of hexosamine biosynthesis pathway, this glycosylation is often associated with glucose toxicity and development of insulin resistance. In this way, O-GlcNAc could be involved in muscle pathological consequences of diabetes. Nevertheless, in regards of several studies performed in healthy striated muscles, O-GlcNAc seems to exert protective effects against different types of injuries. Recent new insights suggest a key implication of O-GlcNAc in skeletal and cardiac muscles contractile activity, in particular by O-GlcNAc modification of motor as well as regulating contractile proteins. While evidence linked O-GlcNAc to the regulation of calcium activation properties, its exact role remains to be defined as well as the existence of potential interference with phosphorylation. The better understanding of the exact function of OGlcNAc in this physiological process could contribute to the determination of newly markers of skeletal dysfunctions.

UI MeSH Term Description Entries
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003920 Diabetes Mellitus A heterogeneous group of disorders characterized by HYPERGLYCEMIA and GLUCOSE INTOLERANCE.
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein

Related Publications

C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
July 1967, The Journal of general physiology,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
January 2010, Advances in experimental medicine and biology,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
December 1981, The Journal of cell biology,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
October 1958, Acta physiologica Scandinavica,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
December 1973, Journal of theoretical biology,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
October 1972, The Journal of cell biology,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
September 2016, Biochimica et biophysica acta,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
December 1993, The American journal of physiology,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
August 1985, Journal of muscle research and cell motility,
C Cieniewski-Bernard, and V Montel, and L Stevens, and B Bastide
January 2021, Advances and applications in bioinformatics and chemistry : AABC,
Copied contents to your clipboard!