Reduced models for binocular rivalry. 2010

Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
IIMS, Massey University, Private Bag 102-904, NSMC, Auckland, New Zealand. c.r.laing@massey.ac.nz

Binocular rivalry occurs when two very different images are presented to the two eyes, but a subject perceives only one image at a given time. A number of computational models for binocular rivalry have been proposed; most can be categorised as either "rate" models, containing a small number of variables, or as more biophysically-realistic "spiking neuron" models. However, a principled derivation of a reduced model from a spiking model is lacking. We present two such derivations, one heuristic and a second using recently-developed data-mining techniques to extract a small number of "macroscopic" variables from the results of a spiking neuron model simulation. We also consider bifurcations that can occur as parameters are varied, and the role of noise in such systems. Our methods are applicable to a number of other models of interest.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010775 Photic Stimulation Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological
D012815 Signal Processing, Computer-Assisted Computer-assisted processing of electric, ultrasonic, or electronic signals to interpret function and activity. Digital Signal Processing,Signal Interpretation, Computer-Assisted,Signal Processing, Digital,Computer-Assisted Signal Interpretation,Computer-Assisted Signal Interpretations,Computer-Assisted Signal Processing,Interpretation, Computer-Assisted Signal,Interpretations, Computer-Assisted Signal,Signal Interpretation, Computer Assisted,Signal Interpretations, Computer-Assisted,Signal Processing, Computer Assisted
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
January 2002, Journal of vision,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
May 2020, Journal of computational neuroscience,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
January 2012, i-Perception,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
December 2009, Current biology : CB,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
May 1977, Journal of experimental psychology. Human perception and performance,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
December 2005, Journal of neurophysiology,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
October 2001, Vision research,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
January 1988, Vision research,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
September 2007, Vision research,
Carlo R Laing, and Thomas Frewen, and Ioannis G Kevrekidis
May 2005, The British journal of mathematical and statistical psychology,
Copied contents to your clipboard!