Genetic polymorphism in cytochrome P450 2D6 (CYP2D6): Population distribution of CYP2D6 activity. 2009

Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
University of Connecticut, Storrs, USA.

Cytochrome P-450 2D6 (CYP2D6) is involved in the metabolism of many therapeutic drugs even though the enzyme represents a small proportion of the total CYP content of human liver. In vivo phenotyping with probe drug substrates such as debrisoquine and dextromethorphan showed a clear separation between poor metabolizers (PM) and extensive metabolizers (EM). This polymorphism may affect susceptibility to environmental disease, as suggested by molecular epidemiologic studies that found an association between CYP2D6 metabolizer phenotype and cancer risk; however, this association is not consistent. There are only a few examples of CYP2D6 involvement in toxicant mechanism of action, but this has not been extensively studied. Gene probe studies documented a number of genetic polymorphisms that underlie CYP2D6 metabolizer phenotypes. The EM group carries the wild-type (*1) or active (*2) variant alleles, while the PM group carries the *3, *4, *5, or *6 alleles, all of which code for a protein that has lower or null CYP2D6 activity. The current analysis characterizes (a) influence of genotype on phenotype based upon in vivo metabolism studies of probe drugs and (b) frequency of the major genotypes in different population groups is also characterized. These data were then incorporated into Monte Carlo modeling to simulate population distributions of CYP2D6 activity. This analysis reproduced the bimodal distributions commonly seen in phenotyping studies of Caucasians and found extensive population variability in enzyme activity, as indicated by the 9- to 56-fold difference between the PM modal median and the total population median CYP2D6 activity. This substantial degree of interindividual variability in CYP function indicates that assessments involving CYP2D6 substrates need to consider the full distribution of enzyme activity in refining estimates of internal dose in health assessments of xenobiotics.

UI MeSH Term Description Entries
D009010 Monte Carlo Method In statistics, a technique for numerically approximating the solution of a mathematical problem by studying the distribution of some random variable, often generated by a computer. The name alludes to the randomness characteristic of the games of chance played at the gambling casinos in Monte Carlo. (From Random House Unabridged Dictionary, 2d ed, 1993) Method, Monte Carlo
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D004364 Pharmaceutical Preparations Drugs intended for human or veterinary use, presented in their finished dosage form. Included here are materials used in the preparation and/or formulation of the finished dosage form. Drug,Drugs,Pharmaceutical,Pharmaceutical Preparation,Pharmaceutical Product,Pharmaceutic Preparations,Pharmaceutical Products,Pharmaceuticals,Preparations, Pharmaceutical,Preparation, Pharmaceutical,Preparations, Pharmaceutic,Product, Pharmaceutical,Products, Pharmaceutical
D005828 Genetics, Population The discipline studying genetic composition of populations and effects of factors such as GENETIC SELECTION, population size, MUTATION, migration, and GENETIC DRIFT on the frequencies of various GENOTYPES and PHENOTYPES using a variety of GENETIC TECHNIQUES. Population Genetics
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D017720 Molecular Epidemiology The application of molecular biology to the answering of epidemiological questions. The examination of patterns of changes in DNA to implicate particular carcinogens and the use of molecular markers to predict which individuals are at highest risk for a disease are common examples. Epidemiology, Molecular,Genetic Epidemiology,Epidemiologies, Genetic,Epidemiologies, Molecular,Epidemiology, Genetic,Genetic Epidemiologies,Molecular Epidemiologies
D044469 Racial Groups Groups of individuals with similar physical appearances often reinforced by cultural, social and/or linguistic similarities. Continental Population Groups,Race,Racial Stocks,Continental Population Group,Group, Continental Population,Group, Racial,Groups, Continental Population,Groups, Racial,Population Group, Continental,Population Groups, Continental,Races,Racial Group,Racial Stock,Stock, Racial,Stocks, Racial
D019389 Cytochrome P-450 CYP2D6 A cytochrome P450 enzyme that catalyzes the hydroxylation of many drugs and environmental chemicals, such as DEBRISOQUINE; ADRENERGIC RECEPTOR ANTAGONISTS; and TRICYCLIC ANTIDEPRESSANTS. This enzyme is deficient in up to 10 percent of the Caucasian population. CYP2D6,Debrisoquine 4-Hydroxylase,Debrisoquine Hydroxylase,CYP 2D6,Cytochrome P450 2D6,Debrisoquine 4-Monooxygenase,Imipramine 2-Hydroxylase,Sparteine Monooxygenase,2-Hydroxylase, Imipramine,4-Hydroxylase, Debrisoquine,4-Monooxygenase, Debrisoquine,CYP2D6, Cytochrome P-450,Cytochrome P 450 CYP2D6,Debrisoquine 4 Hydroxylase,Debrisoquine 4 Monooxygenase,Hydroxylase, Debrisoquine,Imipramine 2 Hydroxylase,Monooxygenase, Sparteine,P-450 CYP2D6, Cytochrome,P450 2D6, Cytochrome

Related Publications

Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
December 1993, Pharmacogenetics,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
December 2018, Revista brasileira de ginecologia e obstetricia : revista da Federacao Brasileira das Sociedades de Ginecologia e Obstetricia,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
January 2020, Indian journal of pharmacology,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
February 1998, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
October 2022, Clinical and translational science,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
August 2008, Hepatology (Baltimore, Md.),
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
January 1993, British journal of clinical pharmacology,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
June 2005, Biological & pharmaceutical bulletin,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
January 2015, International journal of clinical and experimental medicine,
Patricia Neafsey, and Gary Ginsberg, and Dale Hattis, and Babasaheb Sonawane
July 1998, British journal of clinical pharmacology,
Copied contents to your clipboard!