Activities of E7 promoters in the human papillomavirus type 16 genome during cell differentiation. 2010

Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
The DNA Tumor Virus Laboratory, Institute of Cellular and Molecular Medicine, University of Copenhagen, Denmark.

Worldwide, one of the most common cancer forms diagnosed in women is cervical cancer induced by infections with high-risk human papillomaviruses (HPVs) with HPV type 16 (HPV-16) being the most frequently identified. The oncogenicity is caused mainly by expression of the oncogenes E6 and E7 leading to deregulation of the cell cycle control. HPV-16 preferably infects the proliferating cells that will differentiate when they move upwards in the epithelium. The viral gene-expression is tightly coupled to the cellular differentiation program with early gene-expression being initiated in non- or low-differentiated cells and late gene-expression in more differentiated cells. We induced epithelial cells to differentiate by growth in medium with a high calcium concentration and measured the activity of different promoters thought to initiate E6 and/or E7 transcripts. The overall activity of the main promoter, P97, situated in the long control region as well as the two promoters, P441 and P542, in the E6 ORF upstream of the E7 ORF, were decreased during differentiation. However, P441 and P542 were not down-regulated as much as P97. Therefore, we suggest that P441 and P542 regulate gene-expression in differentiated cells.

UI MeSH Term Description Entries
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines
D050725 Papillomavirus E7 Proteins ONCOGENE PROTEINS from papillomavirus that deregulate the CELL CYCLE of infected cells and lead to NEOPLASTIC CELL TRANSFORMATION. Papillomavirus E7 proteins have been shown to interact with various regulators of the cell cycle including RETINOBLASTOMA PROTEIN and certain cyclin-dependent kinase inhibitors. E7 Oncogene Proteins,Oncogene Protein E7, Papillomavirus,E7 Proteins, Papillomavirus,Oncogene Proteins, E7

Related Publications

Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
January 1990, Journal of virology,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
March 2005, Gynecologic oncology,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
September 2008, Journal of virology,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
May 2000, Journal of virology,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
December 1991, Japanese journal of cancer research : Gann,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
May 1997, Journal of virology,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
April 1992, Journal of virology,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
October 1988, Proceedings of the National Academy of Sciences of the United States of America,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
November 1993, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
Christina Neigaard Hansen, and Lone Nielsen, and Bodil Norrild
October 2005, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
Copied contents to your clipboard!