Characterization of ribavirin uptake systems in human hepatocytes. 2010

Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba-shi, Chiba, Japan.

OBJECTIVE The purpose of this study was to identify the major ribavirin uptake transporter(s) in human hepatocytes and to determine if these previously unidentified transporters are involved in hepatic ribavirin uptake. Furthermore, we aimed to address what causes the difference in uptake levels among human hepatocytes. METHODS Profiles of ribavirin uptake and nucleoside transporter mRNA expression in Caucasian hepatocytes (HH268, HH283 and HH291) were characterized by transport assay and reverse transcription-polymerase chain reaction (RT-PCR). The 5'-side of the SLC29A1 gene structure was characterized by determination of transcription start sites and by RT-PCR. RESULTS Equilibrative nucleoside transporter 1 (ENT1)-mediated uptake was exclusively involved in ribavirin uptake in HH268 and HH283 and was responsible for the largest ribavirin uptake fraction in HH291. The level of ENT1-mediated uptake in HH291 was higher than that in HH268 and HH283. Characterization of the SLC29A1 gene structure revealed the existence of several ENT1 mRNA isoforms in the human liver, and the levels of four ENT1 mRNA isoforms in HH291 were higher than those in HH268 or HH283. No ENT2-mediated uptake was observed in any hepatocyte lines. Na(+)-dependent uptake was detected only in HH291; however, mRNA levels of concentrative nucleoside transporters (CNTs) were at trace levels in all hepatocyte lines. CONCLUSIONS ENT1, but not ENT2 or CNTs, is a major ribavirin uptake transporter in human hepatocytes. The different ENT1-mediated ribavirin uptake levels in different hepatocyte lines are associated with different expression levels of specific isoforms of ENT1 mRNAs. Furthermore, an unidentified Na(+)-dependent ribavirin transport system might exist in human hepatocytes.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012254 Ribavirin A nucleoside antimetabolite antiviral agent that blocks nucleic acid synthesis and is used against both RNA and DNA viruses. Ribovirin,Tribavirin,ICN-1229,Rebetol,Ribamide,Ribamidil,Ribamidyl,Ribasphere,Vilona,Viramide,Virazide,Virazole,ICN 1229,ICN1229
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D056945 Hep G2 Cells A human liver tumor cell line used to study a variety of liver-specific metabolic functions. Cell Line, Hep G2,Cell Line, Hepatoblastoma G2,Hep G2 Cell Line,HepG2 Cells,Hepatoblastoma G2 Cell Line,Cell, Hep G2,Cell, HepG2,Cells, Hep G2,Cells, HepG2,Hep G2 Cell,HepG2 Cell

Related Publications

Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
January 2015, Archives of pharmacal research,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
April 2010, Journal of hepatology,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
January 2011, Drug metabolism and disposition: the biological fate of chemicals,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
May 2006, Toxicological sciences : an official journal of the Society of Toxicology,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
April 2017, Antiviral chemistry & chemotherapy,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
May 1996, Seminars in liver disease,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
January 1990, Biochemistry international,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
April 2017, Toxicology in vitro : an international journal published in association with BIBRA,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
October 1992, Biochimica et biophysica acta,
Yukina Fukuchi, and Tomomi Furihata, and Misato Hashizume, and Minami Iikura, and Kan Chiba
April 1981, Experientia,
Copied contents to your clipboard!