DNA linking number change induced by sequence-specific DNA-binding proteins. 2010

Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA.

Sequence-specific DNA-binding proteins play a key role in many fundamental biological processes, such as transcription, DNA replication and recombination. Very often, these DNA-binding proteins introduce structural changes to the target DNA-binding sites including DNA bending, twisting or untwisting and wrapping, which in many cases induce a linking number change (Delta Lk) to the DNA-binding site. Due to the lack of a feasible approach, Delta Lk induced by sequence-specific DNA-binding proteins has not been fully explored. In this paper we successfully constructed a series of DNA plasmids that carry many tandem copies of a DNA-binding site for one sequence-specific DNA-binding protein, such as lambda O, LacI, GalR, CRP and AraC. In this case, the protein-induced Delta Lk was greatly amplified and can be measured experimentally. Indeed, not only were we able to simultaneously determine the protein-induced Delta Lk and the DNA-binding constant for lambda O and GalR, but also we demonstrated that the protein-induced Delta Lk is an intrinsic property for these sequence-specific DNA-binding proteins. Our results also showed that protein-mediated DNA looping by AraC and LacI can induce a Delta Lk to the plasmid DNA templates. Furthermore, we demonstrated that the protein-induced Delta Lk does not correlate with the protein-induced DNA bending by the DNA-binding proteins.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002373 Cyclic AMP Receptor Protein A transcriptional regulator in prokaryotes which, when activated by binding cyclic AMP, acts at several promoters. Cyclic AMP receptor protein was originally identified as a catabolite gene activator protein. It was subsequently shown to regulate several functions unrelated to catabolism, and to be both a negative and a positive regulator of transcription. Cell surface cyclic AMP receptors are not included (CYCLIC AMP RECEPTORS), nor are the eukaryotic cytoplasmic cyclic AMP receptor proteins, which are the regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASES. Catabolic Gene Activators,Catabolite Activator Protein,Catabolite Gene Activator Protein,Catabolite Gene Activator Proteins,Activator Protein, Catabolite,Activator Proteins, Catabolite,Activator, Catabolic Gene,Activators, Catabolic Gene,Catabolic Gene Activator,Catabolite Activator Proteins,Catabolite Regulator Protein,Catabolite Regulator Proteins,Cyclic AMP Receptor Proteins,Gene Activator, Catabolic,Gene Activators, Catabolic,Protein, Catabolite Activator,Protein, Catabolite Regulator,Proteins, Catabolite Activator,Proteins, Catabolite Regulator,Regulator Protein, Catabolite,Regulator Proteins, Catabolite,cAMP Receptor Protein,cAMP Receptor Proteins,Protein, cAMP Receptor,Proteins, cAMP Receptor,Receptor Protein, cAMP,Receptor Proteins, cAMP
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014764 Viral Proteins Proteins found in any species of virus. Gene Products, Viral,Viral Gene Products,Viral Gene Proteins,Viral Protein,Protein, Viral,Proteins, Viral

Related Publications

Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
September 2016, Biophysical reviews,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
November 2016, Biophysical reviews,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
May 1991, Proceedings of the National Academy of Sciences of the United States of America,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
July 1999, Nucleic acids research,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
November 2002, Chemistry (Weinheim an der Bergstrasse, Germany),
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
January 2004, Methods in cell biology,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
May 2001, Current protocols in protein science,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
January 1991, Methods in enzymology,
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
January 2001, Methods in molecular biology (Clifton, N.J.),
Bo Chen, and Yazhong Xiao, and Chang Liu, and Chenzhong Li, and Fenfei Leng
May 2001, Current protocols in molecular biology,
Copied contents to your clipboard!