Regulation of pseudorabies virus gG glycoprotein gene promoter independently of pseudorabies immediate early IE180 protein. 2010

A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain.

The pseudorabies virus (PRV) glycoprotein known as gG is generally regarded as an early protein, and the immediate early IE180 protein regulates its expression during infection. This study, however, provides evidence that although induction by IE180 is observed, the expression of a marker protein (EGFP), or gG itself, under the control of the gG promoter, can also occur independently of the expression of IE180. This result was demonstrated both with transient transfection assays using plasmids and with viral infections. In transient transfections, the expression under control of the gG promoter depends on the cell type and surprisingly, can be 1.3-fold higher than the expression under the control of the IE180 promoter in Hela Tet-Off cells. Recombinant PRV S3 was constructed by replacing gE in the PRV genome with a chimeric transgene, expressing EGFP under the control of the gG promoter. In PK15 cells infected with NIA-3 wild-type virus or with S3 recombinant virus, expression of gG PRV mRNA (or EGFP mRNA) under the control of the gG promoter in the presence of cycloheximide was detected by RT-PCR. This again indicates that some basal expression was produced in infected cells independently of IE180. This expression was augmented by IE180 protein in both plasmid transfections and viral infections.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011558 Herpesvirus 1, Suid A species of VARICELLOVIRUS producing a respiratory infection (PSEUDORABIES) in swine, its natural host. It also produces an usually fatal ENCEPHALOMYELITIS in cattle, sheep, dogs, cats, foxes, and mink. Aujeszky's Disease Virus,Swine Herpesvirus 1,Aujeszky Disease Virus,Herpesvirus 1 (alpha), Suid,Herpesvirus Suis,Pseudorabies Virus,Suid Herpesvirus 1,Aujeszkys Disease Virus,Herpesvirus 1, Swine,Pseudorabies Viruses,Virus, Pseudorabies,Viruses, Pseudorabies
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014759 Viral Envelope Proteins Integral membrane proteins that are incorporated into the VIRAL ENVELOPE. They are glycosylated during VIRAL ASSEMBLY. Envelope Proteins, Viral,Viral Envelope Glycoproteins,Viral Envelope Protein,Virus Envelope Protein,Virus Peplomer Proteins,Bovine Leukemia Virus Glycoprotein gp51,Hepatitis Virus (MHV) Glycoprotein E2,LaCrosse Virus Envelope Glycoprotein G1,Simian Sarcoma Virus Glycoprotein 70,Viral Envelope Glycoprotein gPr90 (Murine Leukemia Virus),Viral Envelope Glycoprotein gp55 (Friend Virus),Viral Envelope Proteins E1,Viral Envelope Proteins E2,Viral Envelope Proteins gp52,Viral Envelope Proteins gp70,Virus Envelope Proteins,Envelope Glycoproteins, Viral,Envelope Protein, Viral,Envelope Protein, Virus,Envelope Proteins, Virus,Glycoproteins, Viral Envelope,Peplomer Proteins, Virus,Protein, Viral Envelope,Protein, Virus Envelope,Proteins, Viral Envelope,Proteins, Virus Envelope,Proteins, Virus Peplomer
D015967 Gene Expression Regulation, Viral Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses. Regulation of Gene Expression, Viral,Viral Gene Expression Regulation,Regulation, Gene Expression, Viral
D017781 Genes, Immediate-Early Genes that show rapid and transient expression in the absence of de novo protein synthesis. The term was originally used exclusively for viral genes where immediate-early referred to transcription immediately following virus integration into the host cell. It is also used to describe cellular genes which are expressed immediately after resting cells are stimulated by extracellular signals such as growth factors and neurotransmitters. Immediate Early Gene,Immediate-Early Gene,Immediate-Early Genes,Early Gene, Immediate,Early Genes, Immediate,Gene, Immediate Early,Gene, Immediate-Early,Genes, Immediate Early,Immediate Early Genes

Related Publications

A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
July 1997, Journal of virological methods,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
July 1994, Virology,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
April 2008, The European journal of neuroscience,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
August 2004, The Journal of general virology,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
November 2014, mBio,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
February 1998, Veterinary microbiology,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
December 2002, Virus genes,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
June 1998, Annals of the New York Academy of Sciences,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
March 2003, Virology,
A L Muñoz, and M Torres, and B Martín, and L Lerma, and E Tabarés
November 2013, Biochemical and biophysical research communications,
Copied contents to your clipboard!