Physiologically based modeling of p-tert-octylphenol kinetics following intravenous, oral or subcutaneous exposure in male and female Sprague-Dawley rats. 2010

G Hamelin, and S Haddad, and K Krishnan, and R Tardif
Département de santé environnementale et santé au travail, Université de Montréal, Montréal, Québec, Canada.

The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for p-tert-octylphenol (OP) for understanding the qualitative and quantitative determinants of its kinetics in Sprague-Dawley rats. Compartments of the PBPK model included the liver, richly perfused tissues, poorly perfused tissues, reproductive tissues, adipose tissue and subcutaneous space, in which OP uptake was described as a blood flow- or a membrane diffusion-limited process. The PBPK model successfully simulated previously published data on blood and tissue OP concentrations in Sprague-Dawley rats following oral, intravenous (i.v.) or subcutaneous (s.c.) routes. The model predicted that OP concentrations would reach 6.8, 13.8 and 27.9 ng ml(-1) (male) and 7.2, 14.7 and 31.4 ng ml(-1) (female), 4 h after a single i.v. dose of 2, 4 and 8 mg kg(-1), respectively. The model also predicted that OP concentrations would reach 53.3, 134.8 and 271.2 ng ml(-1) (male) and 87.4, 221.4 and 449.7 ng ml(-1) (female) 4 h after a single oral dose (50, 125 and 250 mg kg(-1)) and that, 4 h after a single s.c. dose (125 mg kg(-1)), OP concentrations would reach 111.3 ng ml(-1) (male) and 121.6 ng ml(-1). A marked sex difference was seen in blood and tissue OP concentrations. This was reflected in the model by a gender-specific maximal velocity of metabolism (V(max)) that was higher (1.77 x) in male than in female rats. Further studies are required to elucidate the mechanism underlying the gender differences and to evaluate whether that is also observed in humans.

UI MeSH Term Description Entries
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D004333 Drug Administration Routes The various ways of administering a drug or other chemical to a site in a patient or animal from where the chemical is absorbed into the blood and delivered to the target tissue. Administration Routes, Drug,Administration Route, Drug,Drug Administration Route,Route, Drug Administration,Routes, Drug Administration
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013501 Surface-Active Agents Agents that modify interfacial tension of water; usually substances that have one lipophilic and one hydrophilic group in the molecule; includes soaps, detergents, emulsifiers, dispersing and wetting agents, and several groups of antiseptics. Surface Active Agent,Surface-Active Agent,Surfactant,Surfactants,Tenside,Amphiphilic Agents,Surface Active Agents,Tensides,Active Agent, Surface,Active Agents, Surface,Agent, Surface Active,Agent, Surface-Active,Agents, Amphiphilic,Agents, Surface Active,Agents, Surface-Active
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

G Hamelin, and S Haddad, and K Krishnan, and R Tardif
January 2010, Journal of toxicology and environmental health. Part A,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
January 1996, Archives of toxicology,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
March 2000, Toxicological sciences : an official journal of the Society of Toxicology,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
May 1988, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
January 1992, Drug metabolism and disposition: the biological fate of chemicals,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
October 2006, Environmental toxicology,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
February 2009, Toxicology and industrial health,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
January 2001, Reproductive toxicology (Elmsford, N.Y.),
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
September 2000, Toxicological sciences : an official journal of the Society of Toxicology,
G Hamelin, and S Haddad, and K Krishnan, and R Tardif
December 2012, Neurotoxicology,
Copied contents to your clipboard!