1H NMR identification of a beta-sheet structure and description of folding topology in putidaredoxin. 1991

T C Pochapsky, and X M Ye
Department of Chemistry, Brandeis University, Waltham, Massachusetts 02254.

Putidaredoxin (Pdx), a 106-residue globular protein consisting of a single polypeptide chain and a [2Fe-2S] cluster, is the physiological reductant of P-450cam, which in turn catalyzes the monohydroxylation of camphor by molecular oxygen. No crystal structure has been obtained for Pdx or for any closely homologous protein. The application of two-dimensional 1H NMR methods to the problem of structure determination in Pdx is reported. A beta-sheet consisting of five short strands and one beta-turn has been identified from distinctive nuclear Overhauser effect patterns. All of the backbone resonances and a majority of the side-chain resonances corresponding to protons in the beta-sheet have been assigned sequence specifically. The sheet contains one parallel and three antiparallel strand orientations. Hydrophobic side chains in the beta-sheet face primarily toward the protein interior, except for a group of three valine side chains that are apparently solvent exposed. The potential significance of this "hydrophobic patch" in terms of biological activity is discussed. The folding topology, as determined by the constraints of the beta-sheet, is compared with that of other [2Fe-2S] proteins for which folding topologies are known.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D005288 Ferredoxins Iron-containing proteins that transfer electrons, usually at a low potential, to flavoproteins; the iron is not present as in heme. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Ferredoxin,Ferredoxin I,Ferredoxin II,Ferredoxin III
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

T C Pochapsky, and X M Ye
January 1979, Biofizika,
T C Pochapsky, and X M Ye
January 1979, Biofizika,
T C Pochapsky, and X M Ye
December 1993, Protein science : a publication of the Protein Society,
T C Pochapsky, and X M Ye
May 2003, Journal of molecular biology,
T C Pochapsky, and X M Ye
August 1995, Current opinion in structural biology,
T C Pochapsky, and X M Ye
May 1996, Protein science : a publication of the Protein Society,
T C Pochapsky, and X M Ye
May 1994, FEBS letters,
T C Pochapsky, and X M Ye
August 1977, Nature,
T C Pochapsky, and X M Ye
June 2000, Journal of molecular biology,
T C Pochapsky, and X M Ye
April 2003, The journal of peptide research : official journal of the American Peptide Society,
Copied contents to your clipboard!