Secondary 15N isotope effects on the reactions catalyzed by alcohol and formate dehydrogenases. 1991

N S Rotberg, and W W Cleland
Institute for Enzyme Research, University of Wisconsin-Madison 53705.

Secondary 15N isotope effects at the N-1 position of 3-acetylpyridine adenine dinucleotide have been determined, by using the internal competition technique, for horse liver alcohol dehydrogenase (LADH) with cyclohexanol as a substrate and yeast formate dehydrogenase (FDH) with formate as a substrate. On the basis of less precise previous measurements of these 15N isotope effects, the nicotinamide ring of NAD has been suggested to adopt a boat conformation with carbonium ion character at C-4 during hydride transfer [Cook, P. F., Oppenheimer, N. J. & Cleland, W. W. (1981) Biochemistry 20, 1817]. If this mechanism were valid, as N-1 becomes pyramidal an 15N isotope effect of up to 2-3% would be observed. In the present study the equilibrium 15N isotope effect for the reaction catalyzed by LADH was measured as 1.0042 +/- 0.0007. The kinetic 15N isotope effect for LADH catalysis was 0.9989 +/- 0.0006 for cyclohexanol oxidation and 0.997 +/- 0.002 for cyclohexanone reduction. The kinetic 15N isotope effect for FDH catalysis was 1.004 +/- 0.001. These values suggest that a significant 15N kinetic isotope effect is not associated with hydride transfer for LADH and FDH. Thus, in contrast with the deformation mechanism previously postulated, the pyridine ring of the nucleotide apparently remains planar during these dehydrogenase reactions.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D003511 Cyclohexanols Monohydroxy derivatives of cyclohexanes that contain the general formula R-C6H11O. They have a camphorlike odor and are used in making soaps, insecticides, germicides, dry cleaning, and plasticizers. Cyclohexanol
D005560 Formate Dehydrogenases Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2. Formate Dehydrogenase,Formate Hydrogenlyases,NAD-Formate Dehydrogenase,Dehydrogenase, Formate,Dehydrogenase, NAD-Formate,Dehydrogenases, Formate,Hydrogenlyases, Formate,NAD Formate Dehydrogenase
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000426 Alcohol Dehydrogenase A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen. Alcohol Dehydrogenase (NAD+),Alcohol Dehydrogenase I,Alcohol Dehydrogenase II,Alcohol-NAD+ Oxidoreductase,Yeast Alcohol Dehydrogenase,Alcohol Dehydrogenase, Yeast,Alcohol NAD+ Oxidoreductase,Dehydrogenase, Alcohol,Dehydrogenase, Yeast Alcohol,Oxidoreductase, Alcohol-NAD+
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

N S Rotberg, and W W Cleland
November 1969, Journal of the American Chemical Society,
N S Rotberg, and W W Cleland
January 1989, Annual review of biochemistry,
N S Rotberg, and W W Cleland
January 1981, Annual review of biochemistry,
N S Rotberg, and W W Cleland
October 2004, Journal of the American Chemical Society,
N S Rotberg, and W W Cleland
February 1969, Biochemical and biophysical research communications,
Copied contents to your clipboard!