Genome imprinting and carcinogenesis. 1991

C Sapienza
Ludwig Institute for Cancer Research, Montreal, Canada.

The preferential retention of paternal tumor suppressor alleles in sporadic tumors and the failure to demonstrate genetic linkage between disease predisposition and tumor suppressor loci in familial cases indicates that genome imprinting may be involved in the genesis of some pediatric cancers. A genetic model that invokes the activity of modifier loci (imprinting genes) on alleles to be modified (imprinted genes) is able to account for these data. Genome imprinting may be viewed as a special case of dominance modification, differing from other examples only in that the modification of dominance is dependent on gamete-of-origin. Data from human pediatric tumors, transgenes in the mouse and variegating position-effects in Drosophila, indicate that the net effect of modifier loci is the inactivation of alleles at affected loci. Polymorphism at the level of the modifier loci will result in different degrees of modification between individuals. With respect to tumors, the most important mechanism by which these differences are manifested is cellular mosaicism for the expression of a modified allele. Such characteristics are reminiscent of the behavior of variegating position-effects in Drosophila and the application of this paradigm to human disease phenotypes provides both a mechanism by which differential genome imprinting may be accomplished as well as genetic models that may explain the clinical association of syntenic diseases, the association between tumor progression and specific chromosomal aneuploidy and the unusual inheritance characteristics of many diseases.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D016147 Genes, Tumor Suppressor Genes that inhibit expression of the tumorigenic phenotype. They are normally involved in holding cellular growth in check. When tumor suppressor genes are inactivated or lost, a barrier to normal proliferation is removed and unregulated growth is possible. Antioncogenes,Cancer Suppressor Genes,Emerogenes,Genes, Cancer Suppressor,Genes, Growth Suppressor,Genes, Metastasis Suppressor,Growth Suppressor Genes,Metastasis Suppressor Genes,Tumor Suppressor Genes,Anti-Oncogenes,Genes, Onco-Suppressor,Oncogenes, Recessive,Tumor Suppressing Genes,Anti Oncogenes,Anti-Oncogene,Antioncogene,Cancer Suppressor Gene,Emerogene,Gene, Cancer Suppressor,Gene, Growth Suppressor,Gene, Metastasis Suppressor,Gene, Onco-Suppressor,Gene, Tumor Suppressing,Gene, Tumor Suppressor,Genes, Onco Suppressor,Genes, Tumor Suppressing,Growth Suppressor Gene,Metastasis Suppressor Gene,Onco-Suppressor Gene,Onco-Suppressor Genes,Oncogene, Recessive,Recessive Oncogene,Recessive Oncogenes,Suppressor Gene, Cancer,Suppressor Gene, Growth,Suppressor Gene, Metastasis,Suppressor Genes, Cancer,Suppressor Genes, Growth,Suppressor Genes, Metastasis,Tumor Suppressing Gene,Tumor Suppressor Gene

Related Publications

C Sapienza
November 2011, Gan to kagaku ryoho. Cancer & chemotherapy,
C Sapienza
April 1998, Histology and histopathology,
C Sapienza
February 1988, Lancet (London, England),
C Sapienza
July 1989, Nature,
C Sapienza
July 1996, Cancer genetics and cytogenetics,
C Sapienza
January 1993, Annales de genetique,
C Sapienza
January 1995, Developmental genetics,
C Sapienza
February 1966, Nature,
Copied contents to your clipboard!