Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. 2010

Pinglong Xu, and Rik Derynck
Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, San Francisco, CA 94143, USA.

Inflammatory stimuli activate ectodomain shedding of TNF-alpha, L-selectin, and other transmembrane proteins. We show that p38 MAP kinase, which is activated in response to inflammatory or stress signals, directly activates TACE, a membrane-associated metalloprotease that is also known as ADAM17 and effects shedding in response to growth factors and Erk MAP kinase activation. p38alpha MAP kinase interacts with the cytoplasmic domain of TACE and phosphorylates it on Thr(735), which is required for TACE-mediated ectodomain shedding. Activation of TACE by p38 MAP kinase results in the release of TGF-alpha family ligands, which activate EGF receptor signaling, leading to enhanced cell proliferation. Conversely, depletion of p38alpha MAP kinase activity suppresses EGF receptor signaling and downstream Erk MAP kinase signaling, as well as autocrine EGF receptor-dependent proliferation. Autocrine EGF receptor activation through TACE-mediated ectodomain shedding intimately links inflammation and cancer progression and may play a role in stress and conditions that relate to p38 MAP kinase activation.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000072198 ADAM17 Protein A disintegrin and metalloproteinase domain-containing protein that cleaves the membrane-bound precursor of TUMOR NECROSIS FACTOR-ALPHA to its mature form. It cleaves several other CELL SURFACE PROTEINS, including INTERLEUKIN-1 RECEPTOR TYPE II; TRANSFORMING GROWTH FACTOR ALPHA; L-SELECTIN; MUCIN-1; and AMYLOID BETA-PROTEIN PRECURSOR. It can also function as an activator of the Notch signaling pathway by mediating the cleavage of NOTCH RECEPTORS. ADAM-17,ADAM-17 Protein,CD156b Antigen,Disintegrin and Metalloproteinase Domain-Containing Protein 17,TACA (Enzyme),TACE (Enzyme),TNF-alpha Convertase,TNF-alpha Converting Enzyme,Tumor Necrosis Factor Alpha Convertase,Tumor Necrosis Factor-alpha Convertase,Tumor Necrosis Factor-alpha Converting Enzyme,ADAM 17 Protein,Antigen, CD156b,Convertase, TNF-alpha,Disintegrin and Metalloproteinase Domain Containing Protein 17,TNF alpha Convertase,TNF alpha Converting Enzyme,Tumor Necrosis Factor alpha Converting Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016211 Transforming Growth Factor alpha An EPIDERMAL GROWTH FACTOR related protein that is found in a variety of tissues including EPITHELIUM, and maternal DECIDUA. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form which binds to the EGF RECEPTOR. Epidermal Growth Factor-Related Transforming Growth Factor,TGF-alpha,TGFalpha,Epidermal Growth Factor Related Transforming Growth Factor

Related Publications

Pinglong Xu, and Rik Derynck
November 1988, Science (New York, N.Y.),
Pinglong Xu, and Rik Derynck
January 2007, FEBS letters,
Pinglong Xu, and Rik Derynck
December 2007, Cell research,
Pinglong Xu, and Rik Derynck
August 2017, Biochemical and biophysical research communications,
Pinglong Xu, and Rik Derynck
August 2005, Biochimica et biophysica acta,
Pinglong Xu, and Rik Derynck
June 2000, Journal of leukocyte biology,
Pinglong Xu, and Rik Derynck
January 2006, Journal of cellular physiology,
Pinglong Xu, and Rik Derynck
April 2004, Molecular biology of the cell,
Copied contents to your clipboard!