Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. 2010

Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.

This study presents direct experimental evidence for assessing the electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isotonic and hypertonic saline; the combined contribution was assessed by testing untreated and proteoglycan-depleted samples. Though it is well recognized that proteoglycans contribute significantly to the compressive stiffness of cartilage, results demonstrate that the combined electrostatic and non-electrostatic contributions may add up to more than 98% of the modulus, a magnitude not previously appreciated. Of this contribution, about two thirds arises from electrostatic effects. The compressive modulus of the proteoglycan-depleted cartilage matrix may be as low as 3kPa, representing less than 2% of the normal tissue modulus; experimental evidence also confirms that the collagen matrix in digested cartilage may buckle under compressive strains, resulting in crimping patterns. Thus, it is reasonable to model the collagen as a fibrillar matrix that can sustain only tension. This study also demonstrates that residual stresses in cartilage do not arise exclusively from proteoglycans, since cartilage remains curled relative to its in situ geometry even after proteoglycan depletion. These increased insights on the structure-function relationships of cartilage can lead to improved constitutive models and a better understanding of the response of cartilage to physiological loading conditions.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002358 Cartilage, Articular A protective layer of firm, flexible cartilage over the articulating ends of bones. It provides a smooth surface for joint movement, protecting the ends of long bones from wear at points of contact. Articular Cartilage,Articular Cartilages,Cartilages, Articular
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016474 Weight-Bearing The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot. Load-Bearing,Axial Loading,Loadbearing,Weightbearing,Axial Loadings,Load Bearing,Weight Bearing
D055672 Static Electricity The accumulation of an electric charge on a object Electrostatic,Electrostatics,Static Charge,Charge, Static,Charges, Static,Electricity, Static,Static Charges
D019245 Compressive Strength The maximum compression a material can withstand without failure. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed, p427) Compressive Strengths,Strength, Compressive,Strengths, Compressive

Related Publications

Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
June 1986, Biopolymers,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
January 1975, Biochimica et biophysica acta,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
July 2016, Acta biomaterialia,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
May 1973, The Journal of biological chemistry,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
January 2014, Journal of biomechanics,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
February 1979, The Journal of biological chemistry,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
May 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
October 1984, Archives of biochemistry and biophysics,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
October 2019, Journal of biomechanics,
Clare Canal Guterl, and Clark T Hung, and Gerard A Ateshian
February 1999, Rheumatology (Oxford, England),
Copied contents to your clipboard!