Activation of the baboon fetal pituitary-adrenocortical axis at midgestation by estrogen: adrenal delta 5-3 beta-hydroxysteroid dehydrogenase and 17 alpha-hydroxylase-17,20-lyase activity. 1991

G J Pepe, and E D Albrecht
Department of Physiology, Eastern Virginia Medical School, Norfolk 23501.

We have recently demonstrated that treatment of pregnant baboons with androstenedione (delta 4 A) at midgestation to increase estrogen production induced a pattern of placental cortisol (F) metabolism which was similar to that at term and resulted in de novo F production by the fetus, presumably by activation of the fetal hypothalamic-pituitary-adrenocortical axis. The present study was designed to examine the subcellular events in the fetal adrenal that were apparently stimulated by estrogen-induced alterations in transplacental corticosteroid metabolism. Therefore, we determined the effects of estrogen treatment at midgestation and removal of estrogen action near term on the specific activity of the rate-limiting enzymes delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta HSD) and 17-hydroxylase-17,20-lyase (17 alpha-OHase). Fetal adrenals were obtained on day 100 (n = 11) or day 165 (n = 11) of gestation (term = day 184) from untreated animals, on day 100 from animals receiving delta 4 A daily between days 70-100 (n = 9) to increase placental estrogen production, and on day 165 from baboons treated daily between days 130-164 with antiestrogen ethamoxytriphetol (MER-25; n = 7). The activity of 17 alpha-OHase was determined by incubating adrenal microsomes (105,000 x g) with [3H] progesterone, NAD+, and NADH in phosphate buffer. The radiolabeled products 17-hydroxyprogesterone, delta 4 A, and testosterone were purified, and enzyme activity expressed as picograms of product per min/mg tissue. The activity of 3 beta HSD was determined by incubating adrenal microsomes with [3H]pregnenolone and NAD+ in phosphate buffer. The radiolabeled progesterone product was purified, and enzyme activity was expressed as nanograms per min/mg tissue. Treatment with delta 4 A increased estrogen concentration at midgestation 3-fold to levels comparable to those measured near term. Although fetal adrenal weight was greater at term than at midgestation (p less than 0.05), weight was not increased by delta 4 A treatment. The specific activity (mean +/- SE) of fetal adrenal 17 alpha-OHase at midgestation (181 +/- 29) was increased (P less than 0.05) 3-fold by treatment with delta 4 A to levels (591 +/- 105) comparable to those in adrenal microsomes prepared from untreated animals near term (816 +/- 130). Enzyme activity in adrenals of MER-25-treated baboons was 40%, but not significantly lower than that in term controls.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D010215 Papio A genus of the subfamily CERCOPITHECINAE, family CERCOPITHECIDAE, consisting of five named species: PAPIO URSINUS (chacma baboon), PAPIO CYNOCEPHALUS (yellow baboon), PAPIO PAPIO (western baboon), PAPIO ANUBIS (or olive baboon), and PAPIO HAMADRYAS (hamadryas baboon). Members of the Papio genus inhabit open woodland, savannahs, grassland, and rocky hill country. Some authors consider MANDRILLUS a subgenus of Papio. Baboons,Baboons, Savanna,Savanna Baboons,Baboon,Baboon, Savanna,Papios,Savanna Baboon
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004965 Estrogen Antagonists Compounds which inhibit or antagonize the action or biosynthesis of estrogenic compounds. Estradiol Antagonists,Antagonists, Estradiol,Antagonists, Estrogen
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D004978 Ethamoxytriphetol A non-steroidal estrogen antagonist. MER-25,MER 25,MER25
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal

Related Publications

G J Pepe, and E D Albrecht
June 1996, The Journal of clinical endocrinology and metabolism,
G J Pepe, and E D Albrecht
June 2001, Die Pharmazie,
G J Pepe, and E D Albrecht
November 1977, Biochemical and biophysical research communications,
Copied contents to your clipboard!