4,4'-Methylenebis(2-chloroaniline) (MOCA): the effect of multiple oral administration, route, and phenobarbital induction on macromolecular adduct formation in the rat. 1991

K L Cheever, and D G DeBord, and T F Swearengin
Department of Health and Human Services, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226.

The effect of multiple oral administration of MOCA, a suspect human carcinogen, was studied in the adult male rat. As many as 28 consecutive daily doses of [14C]MOCA at 28.1 mumol/kg body wt (5 microCi/day) were administered and rats were euthanized at weekly intervals for 7 weeks. MOCA adduct formation for globin and serum albumin was evaluated by determination of [14C]MOCA covalent binding. The covalent binding associated with globin showed a linear increase over the 28-day exposure period with 342 fmol/mg globin 24 hr after the final dose. More extensive covalent binding was detected for albumin with 443 fmol/mg albumin after the final dose, but increases were not linear. After cessation of dosing, the albumin adduct levels decreased rapidly (t1/2 = 4.6 days) in relation to globin adduct levels (t1/2 = 16.1 days). The MOCA-globin adduct t1/2 is consistent with that determined after a single 281 mumol/kg oral dose of MOCA. Significant differences related to route of administration were detected for 24-hr globin covalent binding with ip greater than po greater than dermal. Distribution of undifferentiated [14C]MOCA was highest in the liver at 24 hr with tissue levels for liver greater than kidney greater than lung greater than spleen greater than testes greater than urinary bladder. Induction of cytochrome P450 enzymes by administration of phenobarbital (100 mg/kg/day/3 days) resulted in a significant (p less than 0.05) increase in MOCA-globin adduct formation detected with 33.5 pmol/mg globin for induced rats versus 13.6 pmol/mg globin for control rats. Although MOCA-globin and albumin adducts show differing stability, quantification of such MOCA adducts may be useful for long-term industrial biomonitoring of MOCA.

UI MeSH Term Description Entries
D008297 Male Males
D008753 Methylenebis(chloroaniline) Aromatic diamine used in the plastics industry as curing agent for epoxy resins and urethane rubbers. It causes bladder, liver, lung, and other neoplasms. Methylene Bis(chloroaniline),3,3'-Dichloro-4,4'-Diaminodiphenylmethane,4,4'-Methylenebis(2-chloroaniline),MBOCA
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes

Related Publications

K L Cheever, and D G DeBord, and T F Swearengin
January 1993, IARC monographs on the evaluation of carcinogenic risks to humans,
K L Cheever, and D G DeBord, and T F Swearengin
January 1988, Scandinavian journal of work, environment & health,
K L Cheever, and D G DeBord, and T F Swearengin
January 1990, Archives of toxicology,
K L Cheever, and D G DeBord, and T F Swearengin
September 1991, Sangyo igaku. Japanese journal of industrial health,
K L Cheever, and D G DeBord, and T F Swearengin
March 1989, Clinical chemistry,
K L Cheever, and D G DeBord, and T F Swearengin
April 1981, Toxicology and applied pharmacology,
K L Cheever, and D G DeBord, and T F Swearengin
October 1983, Environmental research,
K L Cheever, and D G DeBord, and T F Swearengin
August 1986, Journal of occupational medicine. : official publication of the Industrial Medical Association,
Copied contents to your clipboard!