Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. 1991

W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110.

The alpha 2 beta 1 integrin serves as either a specific cell surface receptor for collagen or as both a collagen and laminin receptor depending upon the cell type. Recently we established that the alpha 2 beta 1 integrin binds to a site within the alpha 1 (I)-CB3 fragment of type I collagen (Staatz, W. D., Walsh, J. J., Pexton, T., and Santoro, S. A. (1990) J. Biol. Chem. 265, 4778-4781). To define the alpha 2 beta 1 recognition sequence further we have prepared an overlapping set of synthetic peptides which completely spans the 148-amino acid alpha 1(I)-CB3 fragment and tested the peptides for ability to inhibit cell adhesion to collagen and laminin substrates. The minimal active recognition sequence defined by these experiments is a tetrapeptide of the sequence Asp-Gly-Glu-Ala (DGEA) corresponding to residues 435-438 of the type I collagen sequence. The DGEA-containing peptides effectively inhibited alpha 2 beta 1-mediated Mg2(+)-dependent adhesion of platelets, which use the alpha 2 beta 1 integrin as a collagen-specific receptor, to collagen but had no effect on alpha 5 beta 1-mediated platelet adhesion to fibronectin or alpha 6 beta 1-mediated platelet adhesion to laminin. In contrast, with T47D breast adenocarcinoma cells, which use alpha 2 beta 1 as a collagen/lamin receptor, adhesion to both collagen and laminin was inhibited by DGEA-containing peptides. Deletion of the alanine residue or substitution of alanine for either the glutamic or aspartic acid residues in DGEA-containing peptides resulted in marked loss of inhibitory activity. These results indicate that the amino acid sequence DGEA serves as a recognition site for the alpha 2 beta 1 integrin complex on platelets and other cells.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
August 1999, The Journal of biological chemistry,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
December 1993, The EMBO journal,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
May 1994, The Biochemical journal,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
December 1991, The EMBO journal,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
July 1996, Journal of cell science,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
March 1990, The Journal of biological chemistry,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
September 1995, Thrombosis and haemostasis,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
March 2000, The Journal of biological chemistry,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
July 1997, Biochemistry and molecular biology international,
W D Staatz, and K F Fok, and M M Zutter, and S P Adams, and B A Rodriguez, and S A Santoro
July 1994, The Journal of cell biology,
Copied contents to your clipboard!