Tight coupling of partial reactions in the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex from Methanosarcina thermophila: acetyl C-C bond fragmentation at the a cluster promoted by protein conformational changes. 2010

Simonida Gencic, and Evert C Duin, and David A Grahame
Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.

Direct synthesis and cleavage of acetyl-CoA are carried out by the bifunctional CO dehydrogenase/acetyl-CoA synthase enzyme in anaerobic bacteria and by the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex in Archaea. In both systems, a nickel- and Fe/S-containing active site metal center, the A cluster, catalyzes acetyl C-C bond formation/breakdown. Carbonyl group exchange of [1-(14)C]acetyl-CoA with unlabeled CO, a hallmark of CODH/ACS, is weakly active in ACDS, and exchange with CO(2) was up to 350 times faster, indicating tight coupling of CO release at the A cluster to CO oxidation to CO(2) at the C cluster in CO dehydrogenase. The basis for tight coupling was investigated by analysis of three recombinant A cluster proteins, ACDS beta subunit from Methanosarcina thermophila, acetyl-CoA synthase of Carboxydothermus hydrogenoformans (ACS(Ch)), and truncated ACS(Ch) lacking its 317-amino acid N-terminal domain. A comparison of acetyl-CoA synthesis kinetics, CO exchange, acetyltransferase, and A cluster Ni(+)-CO EPR characteristics demonstrated a direct role of the ACS N-terminal domain in promoting acetyl C-C bond fragmentation. Protein conformational changes, related to "open/closed" states previously identified crystallographically, were indicated to have direct effects on the coordination geometry and stability of the A cluster Ni(2+)-acetyl intermediate, controlling Ni(2+)-acetyl fragmentation and Ni(2+)(CO)(CH(3)) condensation. EPR spectral changes likely reflect variations in the Ni(+)-CO equatorial coordination environment in closed buried hydrophobic and open solvent-exposed states. The involvement of subunit-subunit interactions in ACDS, versus interdomain contacts in ACS, ensures that CO is not released from the ACDS beta subunit in the absence of appropriate interactions with the alpha(2)epsilon(2) CO dehydrogenase component. The resultant high efficiency CO transfer explains the low rate of CO exchange relative to CO(2).

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002248 Carbon Monoxide Carbon monoxide (CO). A poisonous colorless, odorless, tasteless gas. It combines with hemoglobin to form carboxyhemoglobin, which has no oxygen carrying capacity. The resultant oxygen deprivation causes headache, dizziness, decreased pulse and respiratory rates, unconsciousness, and death. (From Merck Index, 11th ed) Monoxide, Carbon
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D000445 Aldehyde Oxidoreductases Oxidoreductases that are specific for ALDEHYDES. Aldehyde Oxidoreductase,Oxidoreductase, Aldehyde,Oxidoreductases, Aldehyde
D017020 Methanosarcina A genus of anaerobic, irregular spheroid-shaped METHANOSARCINALES whose organisms are nonmotile. Endospores are not formed. These archaea derive energy via formation of methane from acetate, methanol, mono-, di-, and trimethylamine, and possibly, carbon monoxide. Organisms are isolated from freshwater and marine environments.
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

Simonida Gencic, and Evert C Duin, and David A Grahame
April 1996, The Journal of biological chemistry,
Simonida Gencic, and Evert C Duin, and David A Grahame
April 2003, Acta crystallographica. Section D, Biological crystallography,
Simonida Gencic, and Evert C Duin, and David A Grahame
December 1999, Journal of structural biology,
Simonida Gencic, and Evert C Duin, and David A Grahame
December 2003, Journal of the American Chemical Society,
Simonida Gencic, and Evert C Duin, and David A Grahame
October 1998, Biochemistry,
Simonida Gencic, and Evert C Duin, and David A Grahame
July 2008, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!