Generation of a dominant-negative glycogen targeting subunit for protein phosphatase-1. 2010

Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism and the Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, Illinois, USA.

Modulation of the expression of the protein phosphatase-1 (PP1) glycogen-targeting subunit PTG exerts profound effects on cellular glycogen metabolism in vitro and in vivo. PTG contains three distinct binding domains for glycogen, PP1, and a common site for glycogen synthase and phosphorylase. The impact of disrupting the PP1-binding domain on PTG function was examined in 3T3-L1 adipocytes. A full-length PTG mutant was generated as an adenoviral construct in which the valine and phenylalanine residues in the conserved PP1-binding domain were mutated to alanine (PTG-VF). Infection of fully differentiated 3T3-L1 adipocytes with the PTG-VF adenovirus reduced glycogen stores by over 50%. In vitro, PTG-VF competitively interfered with wild-type PTG action, suggesting that the mutant construct acted as a dominant-negative molecule. The reduction in cellular glycogen storage was due to a significantly increased rate of glycogen turnover. Interestingly, acute basal and insulin-stimulated glucose uptake and glycogen synthesis rates were enhanced in PTG-VF expressing cells vs. control 3T3-L1 adipocytes, likely as a compensatory response to the loss of glycogen stores. These results indicate that the mutation of the PP1-binding domain on PTG resulted in the generation of a dominant-negative molecule that impeded endogenous PTG action and reduced cellular glycogen levels, through enhancement of glycogenolysis rather than impairment of glycogen synthesis.

UI MeSH Term Description Entries
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen
D006006 Glycogen Synthase An enzyme that catalyzes the transfer of D-glucose from UDPglucose into 1,4-alpha-D-glucosyl chains. EC 2.4.1.11. Glycogen (Starch) Synthase,Glycogen Synthetase,Glycogen Synthase I,Synthase D,Synthase I,UDP-Glucose Glycogen Glucosyl Transferase,Synthase, Glycogen,Synthetase, Glycogen,UDP Glucose Glycogen Glucosyl Transferase
D000256 Adenoviridae A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases. Adenoviruses,Ichtadenovirus,Adenovirus,Ichtadenoviruses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D017667 Adipocytes Cells in the body that store FATS, usually in the form of TRIGLYCERIDES. WHITE ADIPOCYTES are the predominant type and found mostly in the abdominal cavity and subcutaneous tissue. BROWN ADIPOCYTES are thermogenic cells that can be found in newborns of some species and hibernating mammals. Fat Cells,Lipocytes,Adipocyte,Cell, Fat,Cells, Fat,Fat Cell,Lipocyte
D047908 Intracellular Signaling Peptides and Proteins Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors. Intracellular Signaling Peptides,Intracellular Signaling Proteins,Peptides, Intracellular Signaling,Proteins, Intracellular Signaling,Signaling Peptides, Intracellular,Signaling Proteins, Intracellular
D050261 Glycogenolysis The release of GLUCOSE from GLYCOGEN by GLYCOGEN PHOSPHORYLASE (phosphorolysis). The released glucose-1-phosphate is then converted to GLUCOSE-6-PHOSPHATE by PHOSPHOGLUCOMUTASE before entering GLYCOLYSIS. Glycogenolysis is stimulated by GLUCAGON or EPINEPHRINE via the activation of PHOSPHORYLASE KINASE. Glycogenolyses

Related Publications

Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
April 2008, The Journal of biological chemistry,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
September 2000, Biochemical and biophysical research communications,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
December 1998, The Biochemical journal,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
May 2000, The Journal of biological chemistry,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
June 2008, The Biochemical journal,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
November 1998, FEBS letters,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
December 2018, The FEBS journal,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
February 2008, Journal of molecular endocrinology,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
July 1998, Diabetes care,
Michael J Jurczak, and Joseph L Zapater, and Cynthia C Greenberg, and Matthew J Brady
July 2007, The Biochemical journal,
Copied contents to your clipboard!