Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells. 2010

Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
Department of Pharmacology, Center of Biomedical Research Excellence (COBRE), University of Nevada School of Medicine, 1664 North Virginia, Reno, NV, 89557-0270, USA.

Ca(2+)-activated Cl-() channels (Cl(Ca)) represent an important excitatory mechanism in vascular smooth muscle cells. Active accumulation of Cl-() by several classes of anion transporters results in an equilibrium potential for this ion about 30 mV more positive than the resting potential. Stimulation of Cl(Ca) channels leads to membrane depolarization, which enhances Ca(2+) entry through voltage-gated Ca(2+) channels and leads to vasoconstriction. Cl(Ca) channels can be activated by distinct sources of Ca(2+) that include (1) mobilization from intracellular Ca(2+) stores (ryanodine or inositol 1,4,5-trisphosphate [InsP(3)]) and (2) Ca(2+) entry through voltage-gated Ca(2+) channels or reverse-mode Na(+)/Ca(2+) exchange. The present study was undertaken to determine whether Ca(2+) influx triggered by store depletion (store-operated calcium entry, SOCE) activates Cl(Ca) channels in rabbit pulmonary artery (PA) smooth muscle. Classical store depletion protocols involving block of sarcoplasmic reticular Ca(2+) reuptake with thapsigargin (TG; 1 microM) or cyclopiazonic acid (CPA; 30 microM) led to a consistent nifedipine-insensitive contraction of intact PA rings and rise in intracellular Ca(2+) concentration in single PA myocytes that required the presence of extracellular Ca(2+). In patch clamp experiments, TG or CPA activated a time-independent nonselective cation current (I (SOC)) that (1) reversed between -10 and 0 mV; (2) displayed the typical "N"-shaped current-voltage relationship; and (3) was sensitive to the (I (SOC)) blocker by SKF-96365 (50 microM). In double-pulse protocol experiments, the amplitude of I (SOC) was varied by altering membrane potential during an initial step that was followed by a second constant step to +90 mV to register Ca(2+)-activated Cl(-) current, I (Cl(Ca)). The niflumic acid-sensitive time-dependent I (Cl(Ca)) at +90 mV increased in proportion to the magnitude of the preceding hyperpolarizing step, an effect attributed to graded membrane potential-dependent Ca(2+) entry through I (SOC) and confirmed in dual patch clamp and Fluo-5 experiments to record membrane current and free intracellular Ca(2+) concentration simultaneously. Reverse-transcription polymerase chain reaction (RT-PCR) experiments confirmed the expression of several molecular determinants of SOCE, including transient receptor potential canonical (TRPC) 1, TRPC4, and TRPC6; stromal interacting molecule (STIM) 1 and 2; and Orai1 and 2, as well as the novel and probable molecular candidates thought to encode for Cl(Ca) channels transmembrane protein 16A (TMEM16A) Anoctamin 1 (ANO1) and B (ANO2). Ourpreliminary investigation provides new evidence for a Ca(2+) entry pathway consistent with store-operated Ca(2+) entry signaling that can activate Ca(2+)-activated Cl-() channels in rabbit PA myocytes. We hypothesize that this mechanism may be important in the regulation of membrane potential, Ca(2+) influx, and tone in these cells under physiological and pathophysiological conditions.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D009544 Niflumic Acid An analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. Donalgin,Flunir,Niflactol,Niflugel,Nifluril,Acid, Niflumic
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
January 2007, Cell calcium,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
May 2004, American journal of physiology. Lung cellular and molecular physiology,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
August 2009, Cell calcium,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
January 2011, Journal of biomedical science,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
March 2008, British journal of pharmacology,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
January 2011, Pulmonary circulation,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
January 2002, British journal of pharmacology,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
October 2005, Sheng li ke xue jin zhan [Progress in physiology],
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
January 2017, Cell death discovery,
Abigail S Forrest, and Jeff E Angermann, and Rajesh Raghunathan, and Catherine Lachendro, and Iain A Greenwood, and Normand Leblanc
November 1998, American journal of respiratory and critical care medicine,
Copied contents to your clipboard!