Cell-free protein synthesis systems with extracts from cultured human cells. 2010

Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
RIKEN Systems and Structural Biology Center, Yokohama, Japan.

Cell-free protein synthesis systems have been established with extracts from cultured human cells, HeLa, and hybridoma cells. The former cell line is used to prepare extracts for robust translation, whereas the extract from the latter is primarily employed for expression of glycoproteins. Productivity of both systems can be enhanced by addition of K3L and GADD34, factors that diminish phosphorylation of eIF2alpha. The coupled transcription/translation system is also available as a convenient tool, particularly for the production of large recombinant proteins.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002457 Cell Extracts Preparations of cell constituents or subcellular materials, isolates, or substances. Cell Extract,Extract, Cell,Extracts, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations
D015202 Protein Engineering Procedures by which protein structure and function are changed or created in vitro by altering existing or synthesizing new structural genes that direct the synthesis of proteins with sought-after properties. Such procedures may include the design of MOLECULAR MODELS of proteins using COMPUTER GRAPHICS or other molecular modeling techniques; site-specific mutagenesis (MUTAGENESIS, SITE-SPECIFIC) of existing genes; and DIRECTED MOLECULAR EVOLUTION techniques to create new genes. Genetic Engineering of Proteins,Genetic Engineering, Protein,Proteins, Genetic Engineering,Engineering, Protein,Engineering, Protein Genetic,Protein Genetic Engineering

Related Publications

Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
January 2015, Methods in molecular biology (Clifton, N.J.),
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
January 2014, PloS one,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
February 1969, Biochimica et biophysica acta,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
August 1974, Pediatric research,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
March 1998, Biotechnology advances,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
April 2009, Seikagaku. The Journal of Japanese Biochemical Society,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
September 1971, Biochimica et biophysica acta,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
March 1981, Biochemical and biophysical research communications,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
February 1980, Archives internationales de physiologie et de biochimie,
Satoshi Mikami, and Tominari Kobayashi, and Hiroaki Imataka
January 2014, Biotechnology and bioengineering,
Copied contents to your clipboard!