Microvascular organization of the cat inferior colliculus. 2011

Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, CA 94720-3200, USA.

Brain neural activity depends critically on the blood supply to a given structure. The blood supply can differ within and between divisions, which may have functional significance. We analyzed the microvascular organization of the cat inferior colliculus (IC) to determine if the capillary distribution is homogenous throughout. The IC consists of the central nucleus (CN), the dorsal cortex (DC), and the lateral cortex (LC), each with different roles in auditory behavior and perception. Plastic-embedded tissue was studied from adult cats in 1-μm thick semi-thin sections stained with toluidine blue; tissue was sampled from the IC in a caudal-rostral series of sections. The architectonic subdivisions were drawn independently based on Golgi impregnations. We used the nearest neighbor distance (NND) method to quantify capillary density between subdivisions. Overall, the distribution of capillary density was non-homogenous across the IC. We found significant capillary NND differences between the CN and LC (Mann-Whitney test; p ≤ 0.05), CN and DC (Mann-Whitney test; p ≤ 0.05), and LC and DC (Mann-Whitney test; p ≤ 0.05). The CN had the lowest NND values among all three divisions, indicating the highest capillary density. NND values changed gradually as analysis moved from the center of the IC towards the periphery. The significantly higher microvascular density in the CN may imply that the lemniscal auditory pathway has higher levels of blood flow and metabolic activity than non-lemniscal areas of the IC. The non-homogenous microvascular organization of the IC supports parcellation schemes that delineate three major subdivisions and confirms that the borders between the three regions are not sharp.

UI MeSH Term Description Entries
D007245 Inferior Colliculi The posterior pair of the quadrigeminal bodies which contain centers for auditory function. Colliculus, Inferior,Brachial Nucleus of the Inferior Colliculus,Caudal Colliculus,Colliculus Inferior,Inferior Colliculus,Posterior Colliculus,Colliculi, Inferior,Colliculus Inferiors,Colliculus, Caudal,Colliculus, Posterior,Inferior, Colliculus,Inferiors, Colliculus
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi

Related Publications

Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
December 1988, Journal of neurophysiology,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
January 1992, Journal fur Hirnforschung,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
March 1975, Bulletin de l'Association des anatomistes,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
June 1969, The Journal of comparative neurology,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
January 1973, The Journal of comparative neurology,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
June 1973, The Journal of comparative neurology,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
July 2000, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
September 2000, Hearing research,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
February 1997, Hearing research,
Yohan Song, and Jeffrey G Mellott, and Jeffery A Winer
May 1983, Hearing research,
Copied contents to your clipboard!