AVP-stimulated nucleotide secretion in perfused mouse medullary thick ascending limb and cortical collecting duct. 2009

Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
Department of Physiology and Biophysics, The Water and Salt Research Center, Aarhus University, Aarhus, Denmark.

Extracellular nucleotides are local, short-lived signaling molecules that inhibit renal tubular transport via both luminal and basolateral P2 receptors (1, 2). Apparently, the renal epithelium itself is able to release nucleotides (3, 4). The mechanism and circumstances under which epithelia nucleotide release is stimulated remains elusive (5, 6). Here, we investigate the phenomenon of nucleotide secretion in intact perfused mouse medullary thick ascending limb (mTAL) and cortical collecting duct (CCD). The nucleotide secretion was monitored by a biosensor cell placed to register nucleotides in the tubular out-flow. [Ca(2+)](i) was measured simultaneously in the biosensor cells and the renal tubule with fluo-4. We were able to identify spontaneous tubular nucleotide secretion in resting perfused mTAL. This was seen as lively [Ca(2+)](i) oscillations in the nucleotide biosensor cells when the tubular outflow fluid engulfed the sensing cells. In mouse mTAL 10 nM AVP and dDAVP induced robust [Ca(2+)](i) oscillations, whereas AVP in the CCD induced large, slow and transient [Ca(2+)](i) elevations. Importantly, we identify that AVP/dDAVP triggers tubular secretion of nucleotides in mTAL. After addition of AVP/dDAVP the biosensor cells registered bursts of nucleotides originating from the tubular perfusate. The approximated tubular nucleotide concentration reached peak values of approximately 0.2-0.3 microM. A very similar response was observed after AVP stimulation of CCDs. Thus, AVP stimulated tubular secretion of nucleotides in a burst like pattern with peak tubular nucleotide concentrations in the low micromolar range. Luminal nucleotides are prone to activate luminal P2 receptors which in turn are well described to inhibit AVP-augmented aquaporin-2-dependent water absorption or ENaC-mediated Na(+) transport (8). Therefore, we speculate that local nucleotide signaling is an intrinsic feed-back element of hormonal control of renal tubular transport.

UI MeSH Term Description Entries
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D008138 Loop of Henle The U-shaped portion of the renal tubule in the KIDNEY MEDULLA, consisting of a descending limb and an ascending limb. It is situated between the PROXIMAL KIDNEY TUBULE and the DISTAL KIDNEY TUBULE. Ascending Limb of Loop of Henle,Descending Limb of Loop of Henle,Henle Loop
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001127 Arginine Vasopressin The predominant form of mammalian antidiuretic hormone. It is a nonapeptide containing an ARGININE at residue 8 and two disulfide-linked cysteines at residues of 1 and 6. Arg-vasopressin is used to treat DIABETES INSIPIDUS or to improve vasomotor tone and BLOOD PRESSURE. Argipressin,Vasopressin, Arginine,Arg-Vasopressin,Argipressin Tannate,Arg Vasopressin
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
December 1995, The American journal of physiology,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
January 2015, Acta physiologica (Oxford, England),
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
February 2020, American journal of physiology. Renal physiology,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
January 1988, Annual review of physiology,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
March 1991, Seminars in nephrology,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
April 1991, Kidney international,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
December 1991, The American journal of physiology,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
October 1988, The American journal of physiology,
Elvin Odgaard, and Helle A Praetorius, and Jens Leipziger
January 2001, American journal of physiology. Renal physiology,
Copied contents to your clipboard!