Post-inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex. 1991

W J Spain, and P C Schwindt, and W E Crill
Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle 98195.

1. The effect of conditioning pre-pulses on repetitive firing evoked by intracellular current injection was studied in layer V pyramidal neurones in a brain slice preparation of cat sensorimotor cortex. Most cells displayed spike frequency adaptation (monotonic decline of firing rate to a tonic value) for several hundred milliseconds when depolarized from resting potential, but the cells differed in their response when pre-pulses to other potentials were employed. In one group of cells, the initial firing rate increased as the pre-pulse potential was made more negative (post-hyperpolarization excitation). Adaptation was abolished by depolarizing prepulses. In a second group, the initial firing rate decreased as the pre-pulse potential was made more negative (post-hyperpolarization inhibition). Hyperpolarizing pre-pulses caused the initial firing to fall below and accelerate to the tonic rate over a period of several seconds. A third group displayed a mixture of these two responses: the first three to seven interspike intervals became progressively shorter and subsequent intervals became progressively longer as the conditioning pre-pulse was made more negative (post-hyperpolarization mixed response). 2. Cells were filled with horseradish peroxidase or biocytin after the effect of pre-pulses was determined. All cells whose firing patterns were altered by pre-pulses were large layer V pyramidal neurones. Cells showing post-hyperpolarization excitation or a mixed response had tap root dendrites, fewer spines on the apical dendrite and larger soma diameters than cells showing post-hyperpolarization inhibition. 3. Other electrophysiological parameters varied systematically with the response to conditioning pre-pulses. Both the mean action potential duration and the input resistance of cells showing post-hyperpolarization excitation were about half the values measured in cells showing post-hyperpolarization inhibition. Values were intermediate in cells showing a post-hyperpolarization mixed response. The after-hyperpolarization following a single evoked action potential was 20% briefer in cells showing post-hyperpolarization excitation compared to those showing inhibition. 4. Membrane current measured during voltage clamp suggested that two ionic mechanisms accounted for the three response patterns. Post-hyperpolarization excitation was caused by deactivation of the inward rectifier current (Ih). Selective reduction of Ih with extracellular caesium diminished post-hyperpolarization excitation, whereas blockade of calcium influx had no effect. Post-hyperpolarization inhibition was caused by enhanced activation of a slowly inactivating potassium current. Selective reduction of this current with 4-aminopyridine diminished the post-hyperpolarization inhibition. 5. Chord conductances underlying both Ih and the slow-transient potassium current were measured and divided by leakage conductance to control for differences in cell size.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103

Related Publications

W J Spain, and P C Schwindt, and W E Crill
August 1984, Journal of neurophysiology,
W J Spain, and P C Schwindt, and W E Crill
July 1996, Brain research,
W J Spain, and P C Schwindt, and W E Crill
June 1984, Anatomia, histologia, embryologia,
W J Spain, and P C Schwindt, and W E Crill
August 1984, Journal of neurophysiology,
W J Spain, and P C Schwindt, and W E Crill
January 1985, Journal of neurophysiology,
W J Spain, and P C Schwindt, and W E Crill
December 1987, Brain research,
W J Spain, and P C Schwindt, and W E Crill
March 2003, Journal of neurophysiology,
Copied contents to your clipboard!