Effect on intelligence of relaxing the low phenylalanine diet in phenylketonuria. 1991

I Smith, and M G Beasley, and A E Ades
Department of Child Health, Institute of Child Health, London.

A total of 599 children with phenylketonuria, who had been treated early, were followed up prospectively in order to examine the association between intellectual progress from 4 to 14 years of age and control of phenylalanine concentrations. The phenylalanine rose from around 400 mumol/l during the first four years to above 900 mumol/l by 12 years. The children were divided into two cohorts: cohort I comprised 224 children born in the United Kingdom between 1964 and 1971 and cohort II 375 children born between 1972 and 1978. In a previous study it was shown that by 4 years of age these children already had a mean intelligence quotient (IQ) over half a standard deviation below general population norms, and that IQ fell linearly as average phenylalanine concentrations rose. Multiple regression was used to estimate the size of the associations between IQ at later ages and average phenylalanine concentrations in the periods between assessments, after controlling for previous IQ and phenylalanine control, social class, type of phenylketonuria, and factors relating to diagnosis and early management. For each 300 mumol/l rise in average phenylalanine concentrations for those aged 5 to 8 years IQ at 8 years fell by 4-6 points. This compared with a 7-10 point fall in IQ at 4 years for a similar rise in phenylalanine. After 8 years of age the association between IQ and phenylalanine control disappeared in cohort I but persisted in cohort II and was significant up to 10 years of age, although the association was smaller than at 8 years.

UI MeSH Term Description Entries
D007360 Intelligence The ability to learn and to deal with new situations and to deal effectively with tasks involving abstractions.
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010661 Phenylketonurias A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952). Biopterin Deficiency,Dihydropteridine Reductase Deficiency Disease,Hyperphenylalaninemia, Non-Phenylketonuric,Phenylalanine Hydroxylase Deficiency Disease,BH4 Deficiency,DHPR Deficiency,Deficiency Disease, Dihydropteridine Reductase,Deficiency Disease, Phenylalanine Hydroxylase,Deficiency Disease, Phenylalanine Hydroxylase, Severe,Dihydropteridine Reductase Deficiency,Folling Disease,Folling's Disease,HPABH4C,Hyperphenylalaninaemia,Hyperphenylalaninemia Caused by a Defect in Biopterin Metabolism,Hyperphenylalaninemia, BH4-Deficient, C,Hyperphenylalaninemia, Tetrahydrobiopterin-Deficient, Due To DHPR Deficiency,Non-Phenylketonuric Hyperphenylalaninemia,Oligophrenia Phenylpyruvica,PAH Deficiency,PKU, Atypical,Phenylalanine Hydroxylase Deficiency,Phenylalanine Hydroxylase Deficiency Disease, Severe,Phenylketonuria,Phenylketonuria I,Phenylketonuria II,Phenylketonuria Type 2,Phenylketonuria, Atypical,Phenylketonuria, Classical,QDPR Deficiency,Quinoid Dihydropteridine Reductase Deficiency,Tetrahydrobiopterin Deficiency,Atypical PKU,Atypical Phenylketonuria,Biopterin Deficiencies,Classical Phenylketonuria,Deficiency, BH4,Deficiency, Biopterin,Deficiency, DHPR,Deficiency, Dihydropteridine Reductase,Deficiency, PAH,Deficiency, Phenylalanine Hydroxylase,Deficiency, QDPR,Deficiency, Tetrahydrobiopterin,Disease, Folling,Disease, Folling's,Hyperphenylalaninemia, Non Phenylketonuric,Non Phenylketonuric Hyperphenylalaninemia,Non-Phenylketonuric Hyperphenylalaninemias
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age

Related Publications

I Smith, and M G Beasley, and A E Ades
April 1967, Deutsche medizinische Wochenschrift (1946),
I Smith, and M G Beasley, and A E Ades
October 2000, European journal of pediatrics,
I Smith, and M G Beasley, and A E Ades
September 1978, British medical journal,
I Smith, and M G Beasley, and A E Ades
February 1958, Pediatrics,
I Smith, and M G Beasley, and A E Ades
May 1977, Annals of clinical biochemistry,
I Smith, and M G Beasley, and A E Ades
January 1955, British medical journal,
I Smith, and M G Beasley, and A E Ades
June 1957, A.M.A. journal of diseases of children,
I Smith, and M G Beasley, and A E Ades
September 1964, American journal of mental deficiency,
I Smith, and M G Beasley, and A E Ades
June 1958, A.M.A. archives of internal medicine,
Copied contents to your clipboard!