Transcriptional regulation of a pair-rule stripe in Drosophila. 1991

S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
Department of Biological Sciences, Fairchild Center, Columbia University, New York, New York 10027.

The periodic, seven-stripe pattern of the primary pair-rule gene even-skipped (eve) is initiated by crude, overlapping gradients of maternal and gap gene proteins in the early Drosophila embryo. Previous genetic studies suggest that one of the stripes, stripe 2, is initiated by the maternal morphogen bicoid (bcd) and the gap protein hunchback (hb), while the borders of the stripe are formed by selective repression, involving the gap protein giant (gt) in anterior regions and the Krüppel (Kr) protein in posterior regions. Here, we present several lines of evidence that are consistent with this model for stripe 2 expression, including in vitro DNA-binding experiments and transient cotransfection assays in cultured cells. These experiments suggest that repression involves a competition or short-range quenching mechanism, whereby the binding of gt and Kr interferes with the binding or activity of bcd and hb activators at overlapping or neighboring sites within the eve stripe 2 promoter element. Such short-range repression could reflect a general property of promoters composed of multiple, but autonomous regulatory elements.

UI MeSH Term Description Entries
D007301 Insect Hormones Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones. Insect Hormone,Hormone, Insect,Hormones, Insect
D007605 Juvenile Hormones Compounds, either natural or synthetic, which block development of the growing insect. Insect Growth Regulator,Insect Growth Regulators,Juvenile Hormone,Growth Regulators, Insect,Regulators, Insect Growth,Growth Regulator, Insect,Hormone, Juvenile,Hormones, Juvenile,Regulator, Insect Growth
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila

Related Publications

S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
February 1994, Genes & development,
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
May 1993, Development (Cambridge, England),
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
January 1994, Mechanisms of development,
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
May 1991, Genes & development,
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
May 1996, Developmental biology,
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
February 1993, Development (Cambridge, England),
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
July 2014, Proceedings of the National Academy of Sciences of the United States of America,
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
May 1994, Cell,
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
March 2001, Development (Cambridge, England),
S Small, and R Kraut, and T Hoey, and R Warrior, and M Levine
March 1989, Genes & development,
Copied contents to your clipboard!