Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. 2010

Fei Liu, and Jong Young Choi, and Tae Seok Seo
Department of Chemical and Biomolecular Engineering (BK21 Program) and Institute for the BioCentury, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea.

The unique properties of graphene oxides (GO) such as water dispersibility, versatile surface modification, and photoluminescence make them suitable for biological applications. In this study, we explored the use of GO sheets as a novel DNA biosensor by applying the GO in an array format to recognize specific DNA-DNA hybridization interaction. When the probe DNA linked to the surface of GO by using carbodiimide chemistry is hybridized with a gold nanoparticle (Au NP) labeled complementary DNA strand, the fluorescence emission intensity of the GO array is drastically reduced. TEM data reveal that the Au NPs are dispersed on the GO surface, particularly at edges and folded structures upon hybridization with a density of approximately 80 Au NPs per microm(2). This leads to ca. 87% fluorescence quenching as a consequence of fluorescence energy transfer between Au NPs and the GO sheets. These results suggest that the GO nanomaterials, which are readily synthesized on a large scale from a cheap graphite source, could have a wide range of bioapplications in the fields of biosensors, molecular imaging and nanobiotechnology.

UI MeSH Term Description Entries
D010087 Oxides Binary compounds of oxygen containing the anion O(2-). The anion combines with metals to form alkaline oxides and non-metals to form acidic oxides. Oxide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004867 Equipment Design Methods and patterns of fabricating machines and related hardware. Design, Equipment,Device Design,Medical Device Design,Design, Medical Device,Designs, Medical Device,Device Design, Medical,Device Designs, Medical,Medical Device Designs,Design, Device,Designs, Device,Designs, Equipment,Device Designs,Equipment Designs
D006108 Graphite An allotropic form of carbon that is used in pencils, as a lubricant, and in matches and explosives. It is obtained by mining and its dust can cause lung irritation. Graphene
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D015374 Biosensing Techniques Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing
D017404 In Situ Hybridization, Fluorescence A type of IN SITU HYBRIDIZATION in which target sequences are stained with fluorescent dye so their location and size can be determined using fluorescence microscopy. This staining is sufficiently distinct that the hybridization signal can be seen both in metaphase spreads and in interphase nuclei. FISH Technique,Fluorescent in Situ Hybridization,Hybridization in Situ, Fluorescence,FISH Technic,Hybridization in Situ, Fluorescent,In Situ Hybridization, Fluorescent,FISH Technics,FISH Techniques,Technic, FISH,Technics, FISH,Technique, FISH,Techniques, FISH
D019544 Equipment Failure Analysis The evaluation of incidents involving the loss of function of a device. These evaluations are used for a variety of purposes such as to determine the failure rates, the causes of failures, costs of failures, and the reliability and maintainability of devices. Materials Failure Analysis,Prosthesis Failure Analysis,Analysis, Equipment Failure,Analysis, Materials Failure,Analysis, Prosthesis Failure,Analyses, Equipment Failure,Analyses, Materials Failure,Analyses, Prosthesis Failure,Equipment Failure Analyses,Failure Analyses, Equipment,Failure Analyses, Materials,Failure Analyses, Prosthesis,Failure Analysis, Equipment,Failure Analysis, Materials,Failure Analysis, Prosthesis,Materials Failure Analyses,Prosthesis Failure Analyses
D020411 Oligonucleotide Array Sequence Analysis Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING. DNA Microarrays,Gene Expression Microarray Analysis,Oligonucleotide Arrays,cDNA Microarrays,DNA Arrays,DNA Chips,DNA Microchips,Gene Chips,Oligodeoxyribonucleotide Array Sequence Analysis,Oligonucleotide Microarrays,Sequence Analysis, Oligonucleotide Array,cDNA Arrays,Array, DNA,Array, Oligonucleotide,Array, cDNA,Arrays, DNA,Arrays, Oligonucleotide,Arrays, cDNA,Chip, DNA,Chip, Gene,Chips, DNA,Chips, Gene,DNA Array,DNA Chip,DNA Microarray,DNA Microchip,Gene Chip,Microarray, DNA,Microarray, Oligonucleotide,Microarray, cDNA,Microarrays, DNA,Microarrays, Oligonucleotide,Microarrays, cDNA,Microchip, DNA,Microchips, DNA,Oligonucleotide Array,Oligonucleotide Microarray,cDNA Array,cDNA Microarray

Related Publications

Fei Liu, and Jong Young Choi, and Tae Seok Seo
January 2012, Biosensors & bioelectronics,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
January 2006, Methods in molecular biology (Clifton, N.J.),
Fei Liu, and Jong Young Choi, and Tae Seok Seo
January 2006, Methods in molecular biology (Clifton, N.J.),
Fei Liu, and Jong Young Choi, and Tae Seok Seo
July 2010, Analytical chemistry,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
February 1994, Nucleic acids research,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
January 1992, Nucleic acids symposium series,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
December 2005, The journal of physical chemistry. B,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
March 2010, Analytical chemistry,
Fei Liu, and Jong Young Choi, and Tae Seok Seo
August 2018, ACS applied materials & interfaces,
Copied contents to your clipboard!