Mechanism of benzylselenocyanate inhibition of azoxymethane-induced colon carcinogenesis in F344 rats. 1991

E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
American Health Foundation, Valhalla, New York 10595.

Benzylselenocyanate (BSC), a novel organoselenium compound, has been found to inhibit azoxymethane (AOM)-induced colon carcinogenesis in rats during initiation. To investigate its mechanism of action, we examined the effects of BSC feeding on the following parameters: (a) metabolism of [14C]AOM to 14CO2 in vivo; (b) metabolic activation of AOM to MAM and of MAM to formic acid and methanol by rat liver microsomes in vitro; and (c) AOM-induced DNA methylation in rat livers and colons. Five-week-old male F344 rats were fed modified (23% corn oil) AIN-76A diets containing 0 (control), 25, or 50 ppm of BSC or benzylthiocyanate (BTC), a sulfur analogue of BSC which does not inhibit the colon carcinogenicity of AOM. After 3 weeks, rats were either sacrificed for the isolation of liver microsomes or were given 15 mg/kg of [14C]AOM s.c. to determine the rate of carcinogen metabolism in vivo. No difference in [14C]AOM metabolism was found between rats fed the BTC diets and those fed the control diet. In contrast, the rate of [14C]AOM metabolism, as determined by exhaled radioactivity, was 2-3 times higher in rats fed the BSC diets. While liver microsomes from rats fed the BTC diets metabolized AOM and MAM at rates not significantly different from those obtained with control liver microsomes, the metabolic activation of AOM as well as of MAM was stimulated severalfold when assayed with liver microsomes from rats fed the BSC diets. An increase in total liver cytochrome P-450 was also observed in the BSC-fed rats. Following the administration of 15 mg/kg AOM, significantly less O6-methylguanine and 7-methylguanine was present in the colon DNA from rats consuming the BSC diets than in rats fed the BTC or control diets. The body weight gains of rats fed the 25- and 50-ppm BSC-containing diets for 3 weeks were less (27 and 43%, respectively) than those of rats fed either the control or BTC-containing diets. These results indicate that dietary BSC significantly induces the hydroxylation of AOM and the oxidation of MAM in rat liver. An increase in the rates of AOM and MAM metabolism in the liver due to enzyme induction by BSC will result in decreased delivery of MAM to the colon via the bloodstream. This will be reflected in decreased DNA alkylation, as observed, and is likely to be a major factor in the inhibition of AOM-induced colon carcinogenesis by BSC.

UI MeSH Term Description Entries
D008297 Male Males
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008746 Methylazoxymethanol Acetate The aglycone of CYCASIN. It acts as a potent carcinogen and neurotoxin and inhibits hepatic DNA, RNA, and protein synthesis. (Methyl-ONN-azoxy)methanol Acetate,Acetate, Methylazoxymethanol
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D003485 Cyanates Organic salts of cyanic acid containing the -OCN radical. Cyanate
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
January 1991, Nutrition and cancer,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
December 1997, The Journal of nutrition,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
November 1987, Cancer research,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
July 1984, Journal of the National Cancer Institute,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
August 1993, Carcinogenesis,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
November 1999, Carcinogenesis,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
December 1988, Cancer research,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
August 2000, Cancer letters,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
January 2001, Carcinogenesis,
E S Fiala, and C Joseph, and O S Sohn, and K el-Bayoumy, and B S Reddy
January 2002, Asian Pacific journal of cancer prevention : APJCP,
Copied contents to your clipboard!