Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin G. 1991

M J Janusz, and N S Doherty
Marion Merrell Dow Research Institute, Cincinnati, OH 45054.

The granule proteases of human neutrophils are thought to be responsible for the connective tissue destruction associated with certain inflammatory diseases. Using a model system for the degradation of a macromolecular connective tissue substrate, purified neutrophil elastase and cathepsin G were both individually able to degrade cartilage matrix proteoglycan and this degradation was blocked by the appropriate specific inhibitors. Neutrophil granule lysate also produced cartilage matrix degradation but little inhibition of degradation occurred when either elastase or cathepsin G inhibitor was used alone. However, a combination of elastase and cathepsin G inhibitors each at 100 microM or each at 10 microM blocked cartilage matrix degradation by 89% +/- 1 and 65% +/- 9 (mean +/- SEM, n = 3), respectively. The magnitude of the cartilage degradation mediated by neutrophil lysate, and its sensitivity to specific inhibitors, was reproduced using purified elastase and cathepsin G at the concentrations at which they are present in neutrophil lysate. Human neutrophils stimulated with opsonized zymosan degraded cartilage matrix in a dose-dependent manner in the presence of serum antiproteases. Supernatants from stimulated neutrophils cultured in the presence of serum did not degrade cartilage matrix, indicating that neutrophil mediated degradation in the presence of serum was confined to the protected subjacent region between the inflammatory cell and the substratum. A combination of elastase and cathepsin G inhibitors each at 500 microM or each at 100 microM blocked subjacent cartilage matrix degradation by stimulated human neutrophils by 91% +/- 3 and 54% +/- 8 (mean +/- SEM, n = 5), respectively, whereas either the elastase or cathepsin G inhibitor alone was much less effective. These studies demonstrate that neutrophil-mediated cartilage matrix degradation is produced primarily by elastase and cathepsin G. Furthermore, these results support the hypothesis that inflammatory neutrophils form zones of close contact with substratum that exclude serum antiproteases and that this subjacent degradation of cartilage matrix by stimulated neutrophils can be blocked by a combination of synthetic elastase and cathepsin G inhibitors.

UI MeSH Term Description Entries
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010196 Pancreatic Elastase A protease of broad specificity, obtained from dried pancreas. Molecular weight is approximately 25,000. The enzyme breaks down elastin, the specific protein of elastic fibers, and digests other proteins such as fibrin, hemoglobin, and albumin. EC 3.4.21.36. Elastase,Pancreatopeptidase,Elastase I,Pancreatic Elastase I,Elastase I, Pancreatic,Elastase, Pancreatic
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine
D056649 Cathepsin G A serine protease found in the azurophil granules of NEUTROPHILS. It has an enzyme specificity similar to that of chymotrypsin C.

Related Publications

M J Janusz, and N S Doherty
March 1990, American journal of respiratory cell and molecular biology,
M J Janusz, and N S Doherty
January 1989, Journal of applied physiology (Bethesda, Md. : 1985),
M J Janusz, and N S Doherty
June 1990, The American journal of pathology,
M J Janusz, and N S Doherty
May 1993, Biochemical Society transactions,
M J Janusz, and N S Doherty
September 1984, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
Copied contents to your clipboard!