Isoflurane-induced attenuation of motor evoked potentials caused by electrical motor cortex stimulation during surgery. 1991

B Calancie, and K J Klose, and S Baier, and B A Green
Department of Neurological Surgery, University of Miami School of Medicine, Florida.

Dysfunction of spinal motor conduction during surgical procedures may not be reflected by changes in somatosensory evoked potential waveforms. A method of monitoring that allows direct and continuous assessment of motor function within the central nervous system during surgery would be useful. This paper describes one such method utilizing noninvasive electric cortical stimulation to evoke muscle activity (the motor evoked potential, or MEP) during surgery. The effect of isoflurane (superimposed on a baseline of N2O/narcotic anesthesia) on MEP's in response to cortical stimulation is specifically examined. Eight patients undergoing elective neurosurgical operations were included in the study. All patients received a background of general anesthesia and partial nondepolarizing neuromuscular blockade. The motor cortex was stimulated electrically via self-adhesive scalp electrodes. Electromyographic responses from multiple muscles were measured with subdermal electroencephalograph-type needle electrodes. Motor responses to stimulation were continually recorded on magnetic tape for off-line analysis. Once closing of the surgical incision was begun, a series of four to five stimuli of constant magnitude were applied to obtain "baseline" MEP responses. Patients were then ventilated with isoflurane for up to 8 minutes, during which time stimuli were continued every 15 to 20 seconds. Comparison was made of MEP responses for trials before, 1 minute after, and 5 minutes after the addition of isoflurane. All patients demonstrated reproducible motor responses to cortical stimulation during surgery. Addition of isoflurane [isoflurane)exp, less than or equal to 0.5%) to pre-existing anesthesia caused marked attenuation of MEP amplitudes in all patients within 5 minutes of its application, without affecting neuromuscular transmission as judged by direct peripheral nerve stimulation. It is concluded that: 1) monitoring motor system integrity and function with electric transcranial cortical stimulation during surgery is feasible when utilizing an N2O/narcotic anesthetic protocol; and 2) the quality of data obtained will likely suffer with the addition of isoflurane.

UI MeSH Term Description Entries
D007432 Intraoperative Period The period during a surgical operation. Intraoperative Periods,Period, Intraoperative,Periods, Intraoperative
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D008297 Male Males
D008991 Monitoring, Physiologic The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine. Patient Monitoring,Monitoring, Physiological,Physiologic Monitoring,Monitoring, Patient,Physiological Monitoring
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002574 Cervical Vertebrae The first seven VERTEBRAE of the SPINAL COLUMN, which correspond to the VERTEBRAE of the NECK. Cervical Spine,Cervical Spines,Spine, Cervical,Vertebrae, Cervical
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50

Related Publications

B Calancie, and K J Klose, and S Baier, and B A Green
January 2020, Brain topography,
B Calancie, and K J Klose, and S Baier, and B A Green
October 2003, British journal of anaesthesia,
B Calancie, and K J Klose, and S Baier, and B A Green
September 2000, Neurology,
B Calancie, and K J Klose, and S Baier, and B A Green
April 2001, Neurology,
B Calancie, and K J Klose, and S Baier, and B A Green
January 1990, Electroencephalography and clinical neurophysiology. Supplement,
B Calancie, and K J Klose, and S Baier, and B A Green
July 2002, Journal of clinical monitoring and computing,
B Calancie, and K J Klose, and S Baier, and B A Green
January 2022, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society,
Copied contents to your clipboard!