Finger joint angles and finger forces during maximal cylindrical grasping were measured using multi-camera photogrammetry and pressure-sensitive sheets, respectively. The experimental data were collected from four healthy subjects gripping cylinders of five different sizes. For joint angles, an image analysis system was used to digitize slides showing markers. During the calibration of the camera system, both the nonlinear least square and the direct linear transform methods were applied and compared, the former providing the fewer errors; it was used to determine joint angles. Data were collected from the pressure-sensitive grip films by using the same image analysis system as used in the collection of the joint angle data. The method of using pressure-sensitive sheets provided an estimation of the weighted centre of the phalangeal forces. Results indicate that finger flexion angles at the metacarpophalangeal and proximal interphalangeal joints gradually increase as cylinder diameter decreases, but that at the distal interphalangeal joint the angle remains constant throughout all cylinder sizes. It was also found that most of the radio-ulnar deviation and the axial rotation angles at the finger joints deviate from zero, but the deviations are small. For the force measurement, it was found that total finger force increases as cylinder size decreases, and the phalangeal force centres are not located at the mid-points of the phalanges. The data obtained in this experiment would be useful for muscle force predictions and for the design of handles.