Low-dose synergistic immunosuppression of T-dependent antibody responses by polycyclic aromatic hydrocarbons and arsenic in C57BL/6J murine spleen cells. 2010

Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
The University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, USA.

Polycyclic aromatic hydrocarbons (PAHs) and arsenic are both environmental agents that are known to have significant immunotoxicity. Previous studies have shown that PAH exposure of spleen cells in vitro produces significant immune suppression of humoral immunity, especially when P450 activation products are examined. Exposure to arsenic, particularly sodium arsenite, has also been found to be suppressive to antibody responses in vitro and in vivo. The purpose of the present studies was to examine the immunotoxicity of PAHs and arsenite following coexposures with the theory being that the agents may exert synergistic actions, which might be based on their different mechanisms of action. Spleen cells were isolated from male C57BL/6J wild-type mice and treated with PAHs and/or arsenic (arsenite or arsenate). Immunotoxicity assays were used to assess the T-dependent antibody response (TDAR) to sheep red blood cells (SRBCs), measured by a direct plaque-forming cell (PFC) assay. Cell viability was measured by trypan blue staining. Spleen cell viability was not altered following 4 days of PAH and/or arsenic treatment. However, the TDAR demonstrated suppression by both PAHs and arsenic in a concentration-dependent manner. p53 was also induced by NaAsO(2) (As(3)(+)) and PAHs alone or in combination. The PAHs and their metabolites investigated included benzo[a]pyrene (BaP), BaP-7,8-diol, BaP-7,8-diol-9,10-epoxide (BPDE), 7,12-dimethylbenz[a]anthracene (DMBA), DMBA-3,4-diol, dibenzo[a,l]pyrene (DB[a,l]P). PAH metabolites were found to be more potent than parent compounds in producing immunosuppression and inducing p53 expression. Interestingly, DB[a,l]P, a potent carcinogenic PAH not previously characterized for immunotoxicity, was also found to be strongly immunosuppressive. Arsenite (NaAsO(2), As(3)(+)) was found to produce immunosuppression at concentrations as low as 0.5 microM and was immunosuppressive at a 10-fold lower concentration than sodium arsenate (Na(2)HAsO(4), As(5)(+)). Coexposure of spleen cell cultures to PAHs and As(3)(+), both at individual low-effect concentrations, was found to produce profound suppression of the TDAR demonstrating synergy between these two chemical classes of agents.

UI MeSH Term Description Entries
D007166 Immunosuppressive Agents Agents that suppress immune function by one of several mechanisms of action. Classical cytotoxic immunosuppressants act by inhibiting DNA synthesis. Others may act through activation of T-CELLS or by inhibiting the activation of HELPER CELLS. While immunosuppression has been brought about in the past primarily to prevent rejection of transplanted organs, new applications involving mediation of the effects of INTERLEUKINS and other CYTOKINES are emerging. Immunosuppressant,Immunosuppressive Agent,Immunosuppressants,Agent, Immunosuppressive,Agents, Immunosuppressive
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011084 Polycyclic Aromatic Hydrocarbons Aromatic hydrocarbons that contain extended fused-ring structures. Polycyclic Aromatic Hydrocarbon,Polycyclic Hydrocarbons, Aromatic,Polynuclear Aromatic Hydrocarbon,Polynuclear Aromatic Hydrocarbons,Aromatic Hydrocarbon, Polycyclic,Aromatic Hydrocarbon, Polynuclear,Aromatic Hydrocarbons, Polycyclic,Aromatic Hydrocarbons, Polynuclear,Aromatic Polycyclic Hydrocarbons,Hydrocarbon, Polycyclic Aromatic,Hydrocarbon, Polynuclear Aromatic,Hydrocarbons, Aromatic Polycyclic,Hydrocarbons, Polycyclic Aromatic,Hydrocarbons, Polynuclear Aromatic
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004785 Environmental Pollutants Substances or energies, for example heat or light, which when introduced into the air, water, or land threaten life or health of individuals or ECOSYSTEMS. Environmental Pollutant,Pollutant,Pollutants,Pollutants, Environmental,Pollutant, Environmental
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
December 1978, Proceedings of the National Academy of Sciences of the United States of America,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
September 2003, Xenobiotica; the fate of foreign compounds in biological systems,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
November 2003, Chemosphere,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
June 2009, Environmental science & technology,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
February 1999, Journal of toxicology and environmental health. Part A,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
December 2013, Environmental pollution (Barking, Essex : 1987),
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
January 2000, Carcinogenesis,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
February 2003, Toxicology and applied pharmacology,
Qian Li, and Fredine T Lauer, and Ke Jian Liu, and Laurie G Hudson, and Scott W Burchiel
June 1985, Immunopharmacology,
Copied contents to your clipboard!